Do you want to publish a course? Click here

CMB lensing reconstruction in the presence of diffuse polarized foregrounds

106   0   0.0 ( 0 )
 Added by Yabebal Fantaye T
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The measurement and characterization of the lensing of the cosmic microwave background (CMB) is key goal of the current and next generation of CMB experiments. We perform a case study of a three-channel balloon-borne CMB experiment observing the sky at (l,b)=(250deg,-38deg) and attaining a sensitivity of 5.25 muK-arcmin with 8 angular resolution at 150 GHz, in order to assess whether the effect of polarized Galactic dust is expected to be a significant contaminant to the lensing signal reconstructed using the EB quadratic estimator. We find that for our assumed dust model, polarization fractions of about as low as a few percent may lead to a significant dust bias to the lensing convergence power spectrum. We investigated a parametric component separation method, proposed by Stompor et al. (2009), as well as a template cleaning method, for mitigating the effect of this dust bias. The template-based method recovers unbiased convergence power spectrum in all polarization fraction cases we considered, while for the component separation technique we find a dust contrast regime in which the accuracy of the profile likelihood spectral index estimate breaks down, and in which external information on the dust frequency scaling is needed. We propose a criterion for putting a requirement on the accuracy with which the dust spectral index must be estimated or constrained, and demonstrate that if this requirement is met, then the dust bias can be removed.



rate research

Read More

We explore the reconstruction of the gravitational lensing field of the cosmic microwave background in real space showing that very little statistical information is lost when estimators of short range on the celestial sphere are used in place of the customary estimators in harmonic space, which are nonlocal and in principle require a simultaneous analysis of the entire sky without any cuts or excisions. Because virtually all the information relevant to lensing reconstruction lies on angular scales close to the resolution scale of the sky map, the gravitational lensing dilatation and shear fields (which unlike the deflection field or lensing potential are directly related to the observations in a local manner) may be reconstructed by means of quadratic combinations involving only very closely separated pixels. Even though harmonic space provides a more natural context for understanding lensing reconstruction theoretically, the real space methods developed here have the virtue of being faster to implement and are likely to prove useful for analyzing realistic maps containing a galactic cut and possibly numerous small excisions to exclude point sources that cannot be reliably subtracted.
Gravitational lensing of the CMB is a valuable cosmological signal that correlates to tracers of large-scale structure and acts as a important source of confusion for primordial $B$-mode polarization. State-of-the-art lensing reconstruction analyses use quadratic estimators, which are easily applicable to data. However, these estimators are known to be suboptimal, in particular for polarization, and large improvements are expected to be possible for high signal-to-noise polarization experiments. We develop a method and numerical code, $rm{LensIt}$, that is able to find efficiently the most probable lensing map, introducing no significant approximations to the lensed CMB likelihood, and applicable to beamed and masked data with inhomogeneous noise. It works by iteratively reconstructing the primordial unlensed CMB using a deflection estimate and its inverse, and removing residual lensing from these maps with quadratic estimator techniques. Roughly linear computational cost is maintained due to fast convergence of iterative searches, combined with the local nature of lensing. The method achieves the maximal improvement in signal to noise expected from analytical considerations on the unmasked parts of the sky. Delensing with this optimal map leads to forecast tensor-to-scalar ratio parameter errors improved by a factor $simeq 2 $ compared to the quadratic estimator in a CMB stage IV configuration.
We briefly review our work about the polarized foreground contamination of the Cosmic Microwave Background maps. We start by summarizing the main properties of the polarized cosmological signal, resulting in electric (E) and magnetic (B) components of the polarization tensor field on the sky. Then we describe our present understanding of sub-degree anisotropies from Galactic synchrotron and from extra-Galactic point sources. We discuss their contamination of the cosmological E and B modes.
112 - Clive Dickinson 2010
Polarized foregrounds are going to be a serious challenge for detecting CMB cosmological B-modes. Both diffuse Galactic emission and extragalactic sources contribute significantly to the power spectrum on large angular scales. At low frequencies, Galactic synchrotron emission will dominate with fractional polarization $sim 20-40%$ at high latitudes while radio sources can contribute significantly even on large ($sim 1^{circ}$) angular scales. Nevertheless, simulations suggest that a detection at the level of $r=0.001$ might be achievable if the foregrounds are not too complex.
115 - E. Carretti 2010
The CMB polarization promises to unveil the dawn of time measuring the gravitational wave background emitted by the Inflation. The CMB signal is faint, however, and easily contaminated by the Galactic foreground emission, accurate measurements of which are thus crucial to make CMB observations successful. We review the CMB polarization properties and the current knowledge on the Galactic synchrotron emission, which dominates the foregrounds budget at low frequency. We then focus on the S-Band Polarization All Sky Survey (S-PASS), a recently completed survey of the entire southern sky designed to investigate the Galactic CMB foreground.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا