No Arabic abstract
Assessing the impact of astronomical facilities rests upon an evaluation of the scientific discoveries which their data have enabled. Telescope bibliographies, which link data products with the literature, provide a way to use bibliometrics as an impact measure for the underlying data. In this paper we argue that the creation and maintenance of telescope bibliographies should be considered an integral part of an observatorys operations. We review the existing tools, services, and workflows which support these curation activities, giving an estimate of the effort and expertise required to maintain an archive-based telescope bibliography.
Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) big-data archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.
The Data Access System (DAS) is a metadata and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.
During more than 17 years of operation in space INTEGRAL telescope has accumulated large data set that contains records of hard X-ray and soft gamma-ray astronomical sources. These data can be re-used in the context of multi-wavelength or multi-messenger studies of astronomical sources and have to be preserved on long time scales. We present a scientific validation of an interactive online INTEGRAL data analysis system for multi-wavelength studies of hard X-ray and soft gamma-ray sources. The online data analysis system generates publication-quality high-level data products: sky images, spectra and light-curves in response to user queries that define analysis parameters, such as source position, time and energy interval and binning. The data products can be requested via a web browser interface or via Application Programming Interface (API) available as a Python package. The analysis workflow organized to preserve and re-use various intermediate analysis products, ensuring that frequently requested results are available without delay. The platform can be deployed in any compatible infrastructure. We report the functionalities and performance of the online data analysis system by reproducing the benchmark INTEGRAL results on different types of sources, including bright steady and transient Galactic sources, and bright and weak variable extra-galactic sources. We compare the results obtained with the online data analysis system with previously published results on these sources. We consider the INTEGRAL online data analysis as a demonstrator of more general web-based data analysis as a service approach that provides a promising solution for preservation and maintenance of data analysis tools of astronomical telescopes on (multi)decade long time scales and facilitates combination of data in multi-wavelength and multi-messenger studies of astronomical sources.
GWAC will have been built an integrated FOV of 5,000 $degree^2$ and have already built 1,800 square $degree^2$. The limit magnitude of a 10-second exposure image in the moonless night is 16R. In each observation night, GWAC produces about 0.7TB of raw data, and the data processing pipeline generates millions of single frame alerts. We describe the GWAC Data Processing and Management System (GPMS), including hardware architecture, database, detection-filtering-validation of transient candidates, data archiving, and user interfaces for the check of transient and the monitor of the system. GPMS combines general technology and software in astronomy and computer field, and use some advanced technologies such as deep learning. Practical results show that GPMS can fully meet the scientific data processing requirement of GWAC. It can online accomplish the detection, filtering and validation of millions of transient candidates, and feedback the final results to the astronomer in real-time. During the observation from October of 2018 to December of 2019, we have already found 102 transients.
The Large Synoptic Survey Telescope (LSST) is a large-aperture, wide-field, ground-based survey system that will image the sky in six optical bands from 320 to 1050 nm, uniformly covering approximately $18,000$deg$^2$ of the sky over 800 times. The LSST is currently under construction on Cerro Pachon in Chile, and expected to enter operations in 2022. Once operational, the LSST will explore a wide range of astrophysical questions, from discovering killer asteroids to examining the nature of Dark Energy. The LSST will generate on average 15 TB of data per night, and will require a comprehensive Data Management system to reduce the raw data to scientifically useful catalogs and images with minimum human intervention. These reductions will result in a real-time alert stream, and eleven data releases over the 10-year duration of LSST operations. To enable this processing, the LSST project is developing a new, general-purpose, high-performance, scalable, well documented, open source data processing software stack for O/IR surveys. Prototypes of this stack are already capable of processing data from existing cameras (e.g., SDSS, DECam, MegaCam), and form the basis of the Hyper-Suprime Cam (HSC) Survey data reduction pipeline.