No Arabic abstract
Recent work has suggested that the stellar initial mass function (IMF) is not universal, but rather is correlated with galaxy stellar mass, stellar velocity dispersion, or morphological type. In this paper, we investigate variations of the IMF within individual galaxies. For this purpose, we use strong lensing and gas kinematics to measure independently the normalisation of the IMF of the bulge and disk components of a sample of 5 massive spiral galaxies with substantial bulge components taken from the SWELLS survey. We find that the stellar mass of the bulges are tightly constrained by the lensing and kinematic data. A comparison with masses based on stellar population synthesis models fitted to optical and near infrared photometry favors a Salpeter-like normalisation of the IMF. Conversely, the disk masses are less well constrained due to degeneracies with the dark matter halo, but are consistent with Milky Way type IMFs in agreement with previous studies. The disks are submaximal at 2.2 disk scale lengths, but due to the contribution of the bulges, the galaxies are baryon dominated at 2.2 disk scale lengths. Globally, our inferred IMF normalisation is consistent with that found for early-type galaxies of comparable stellar mass (> 10^11 M_sun). Our results suggest a non-universal IMF within the different components of spiral galaxies, adding to the well-known differences in stellar populations between disks and bulges.
We construct a fully self-consistent mass model for the lens galaxy J2141 at z=0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric mass model constituted by a generalized NFW dark matter halo and a stellar mass distribution obtained by deprojecting the MGE fit to the high-resolution K-band LGSAO imaging data of the galaxy, with the (spatially constant) M/L ratio as a free parameter. We model the stellar kinematics by solving the anisotropic Jeans equations. We find that the inner logarithmic slope of the dark halo is weakly constrained (gamma = 0.82^{+0.65}_{-0.54}), and consistent with an unmodified NFW profile. We infer the galaxy to have (i) a dark matter fraction within 2.2 disk radii of 0.28^{+0.15}_{-0.10}, independent of the galaxy stellar population, implying a maximal disk for J2141; (ii) an apparently uncontracted dark matter halo, with concentration c_{-2} = 7.7_{-2.5}^{+4.2} and virial velocity v_{vir} = 242_{-39}^{+44} km/s, consistent with LCDM predictions; (iii) a slightly oblate halo (q_h = 0.75^{+0.27}_{-0.16}), consistent with predictions from baryon-affected models. Comparing the stellar mass inferred from the combined analysis (log_{10} Mstar/Msun = 11.12_{-0.09}^{+0.05}) with that inferred from SPS modelling of the galaxies colours, and accounting for a cold gas fraction of 20+/-10%, we determine a preference for a Chabrier IMF over Salpeter IMF by a Bayes factor of 5.7 (substantial evidence). We infer a value beta_{z} = 1 - sigma^2_{z}/sigma^2_{R} = 0.43_{-0.11}^{+0.08} for the orbital anisotropy parameter in the meridional plane, in agreement with most studies of local disk galaxies, and ruling out at 99% CL that the dynamics of this system can be described by a two-integral distribution function. [Abridged]
By means of high-resolution cosmological hydrodynamical simulations of Milky Way-like disc galaxies, we conduct an analysis of the associated stellar metallicity distribution functions (MDFs). After undertaking a kinematic decomposition of each simulation into spheroid and disc sub-components, we compare the predicted MDFs to those observed in the solar neighbourhood and the Galactic bulge. The effects of the star formation density threshold are visible in the star formation histories, which show a modulation in their behaviour driven by the threshold. The derived MDFs show median metallicities lower by 0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic bulge. Possible reasons for this apparent discrepancy include the use of low stellar yields and/or centrally-concentrated star formation. The dispersions are larger than the one of the observed MDF; this could be due to simulated discs being kinematically hotter relative to the Milky Way. The fraction of low metallicity stars is largely overestimated, visible from the more negatively skewed MDF with respect to the observational sample. For our fiducial Milky Way analog, we study the metallicity distribution of the stars born in situ relative to those formed via accretion (from disrupted satellites), and demonstrate that this low-metallicity tail to the MDF is populated primarily by accreted stars. Enhanced supernova and stellar radiation energy feedback to the surrounding interstellar media of these pre-disrupted satellites is suggested as an important regulator of the MDF skewness.
Young Moving Groups (YMGs) are close (<100pc), coherent collections of young (<100Myr) stars that appear to have formed in the same star-forming molecular cloud. As such we would expect their individual initial mass functions (IMFs) to be similar to other star-forming regions, and by extension the Galactic field. Their close proximity to the Sun and their young ages means that YMGs are promising locations to search for young forming exoplanets. However, due to their low numbers of stars, stochastic sampling of the IMF means their stellar populations could vary significantly. We determine the range of planet-hosting stars (spectral types A, G and M) possible from sampling the IMF multiple times, and find that some YMGs appear deficient in M-dwarfs. We then use these data to show that the expected probability of detecting terrestrial magma ocean planets is highly dependent on the exact numbers of stars produced through stochastic sampling of the IMF.
[Abridged] Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar tidal features of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of 8 isolated spiral galaxies in the Local Volume, with data taken at small (D=0.1-0.5m) robotic telescopes that provide exquisite surface brightness sensitivity (mu_V)~28.5$ mag/arcsec^2). This initial observational effort has led to the discovery of six previously undetected extensive (to ~30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stelar body, as well as jet-like features emerging from galactic disks. A qualitative comparison with available simulations set in a Lambda-Cold Dark Matter cosmology shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around normal disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.
We investigate the origin of the relations between stellar mass and optical circular velocity for early-type (ETG) and late-type (LTG) galaxies --- the Faber-Jackson (FJ) and Tully-Fisher (TF) relations. We combine measurements of dark halo masses (from satellite kinematics and weak lensing), and the distribution of baryons in galaxies (from a new compilation of galaxy scaling relations), with constraints on dark halo structure from cosmological simulations. The principle unknowns are the halo response to galaxy formation and the stellar initial mass function (IMF). The slopes of the TF and FJ relations are naturally reproduced for a wide range of halo response and IMFs. However, models with a universal IMF and universal halo response cannot simultaneously reproduce the zero points of both the TF and FJ relations. For a model with a universal Chabrier IMF, LTGs require halo expansion, while ETGs require halo contraction. A Salpeter IMF is permitted for high mass (sigma > 180 km/s) ETGs, but is inconsistent for intermediate masses, unless V_circ(R_e)/sigma_e > 1.6. If the IMF is universal and close to Chabrier, we speculate that the presence of a major merger may be responsible for the contraction in ETGs while clumpy accreting streams and/or feedback leads to expansion in LTGs. Alternatively, a recently proposed variation in the IMF disfavors halo contraction in both types of galaxies. Finally we show that our models naturally reproduce flat and featureless circular velocity profiles within the optical regions of galaxies without fine-tuning.