Do you want to publish a course? Click here

Precision Near Infrared Photometry For Exoplanet Transit Observations - I : Ensemble Spot Photometry for An All-Sky Survey

137   0   0.0 ( 0 )
 Added by Christian Clanton
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Near-IR observations are important for the detection and characterization of exoplanets using the transit technique, either in surveys of large numbers of stars or for follow-up spectroscopic observations of individual planets. In a controlled laboratory experiment, we imaged $sim 10^4$ critically sampled spots onto an Teledyne Hawaii-2RG (H2RG) detector to emulate an idealized star-field. We obtained time-series photometry of up to $simeq 24$ hr duration for ensembles of $sim 10^3$ pseudo-stars. After rejecting correlated temporal noise caused by various disturbances, we measured a photometric performance of $<$50 ppm-hr$^{-1/2}$ limited only by the incident photon rate. After several hours we achieve a photon-noise limited precision level of $10sim20$ ppm after averaging many independent measurements. We conclude that IR detectors such as the H2RG can make the precision measurements needed to detect the transits of terrestrial planets or detect faint atomic or molecular spectral features in the atmospheres of transiting extrasolar planets.



rate research

Read More

Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity follow-up can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidates true nature needs to be determined based on these alternative methods alone. Aims. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source. We seek to answer how securely can we estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model. Methods. The study is based on simulations and ground-based transit observations. The analyses are carried out with a contamination model integrated into the PyTransit v2 transit modelling package, and the observations are carried out with the MuSCAT2 multicolour imager installed in the 1.5 m TCS in the Teide Observatory. Results. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.
Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that PCA-based KLIP reduction with satellite spot-modulated artificial planet-injection based photometry (SMAP) leads to a significant (~3x) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our dataset, the signal-to-noise of which is limited by small field rotation. Relative planet-to-planet photometry can be compared be- tween nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b-c planet pair agree to about 1%.
The benchmark exoplanet GJ 1214b is one of the best studied transiting planets in the transition zone between rocky Earth-sized planets and gas or ice giants. This class of super-Earth/mini-Neptune planets is unknown in our Solar System, yet is one of the most frequently detected classes of exoplanets. Understanding the transition from rocky to gaseous planets is a crucial step in the exploration of extrasolar planetary systems, in particular with regard to the potential habitability of this class of planets. GJ 1214b has already been studied in detail from various platforms at many different wavelengths. Our airborne observations with SOFIA add information in the Paschen-alpha cont. 1.9 micron infrared wavelength band, which is not accessible by any other current ground- or space-based instrument due to telluric absorption or limited spectral coverage. We used FLIPO and FPI+ on SOFIA to comprehensively analyse the transmission signal of the possible water-world GJ 1214b through photometric observations during transit in three optical and one infrared channels. We present four simultaneous light curves and corresponding transit depths in three optical and one infrared channel, which we compare to previous observations and state-of-the-art synthetic atmospheric models of GJ 1214b. The final precision in transit depth is between 1.5 and 2.5 times the theoretical photon noise limit, not sensitive enough to constrain the theoretical models any better than previous observations. This is the first exoplanet observation with SOFIA that uses its full set of instruments available to exoplanet spectrophotometry. Therefore we use these results to evaluate SOFIAs potential in this field and suggest future improvements.
The Multicolor Simultaneous Camera for studying Atmospheres of Transiting exoplanets (MuSCAT) is an optical three-band (g_2-, r_2-, and z_{s,2}-band) imager that was recently developed for the 188cm telescope at Okayama Astrophysical Observatory with the aim of validating and characterizing transiting planets. In a pilot observation with MuSCAT we observed a primary transit of HAT-P-14b, a high-surface gravity (g_p=38 ms^{-2}) hot Jupiter around a bright (V=10) F-type star. From a 2.9 hr observation, we achieved the five-minute binned photometric precisions of 0.028%, 0.022%, and 0.024% in the g_2, r_2, and z_{s,2} bands, respectively, which provided the highest-quality photometric data for this planet. Combining these results with those of previous observations, we search for variations of transit timing and duration over five years as well as variations of planet-star radius ratio (R_p/R_s) with wavelengths, but can find no considerable variation in any parameters. On the other hand, using the transit-subtracted light curves we simulate achievable measurement error of R_p/R_s with MuSCAT for various planetary sizes, assuming three types of host stars: HAT-P-14, the nearby K dwarf HAT-P-11, and the nearby M dwarf GJ1214. Comparing our results with the expected atmospheric scale heights, we find that MuSCAT is capable of probing the atmospheres of planets as small as a sub-Jupiter (R_p ~6 R_Earth) around HAT-P-14 in all bands, a Neptune (~4R_Earth) around HAT-P-11 in all bands, and a super-Earth (~2.5R_Earth) around GJ1214 in r_2 and z_{s,2} bands. These results promise that MuSCAT will produce fruitful scientific outcomes in the K2 and TESS era.
(Abridged) We aim at measuring the near-infrared photometry, and deriving the mass, age, temperature, and surface gravity of WISE J085510.74-071442.5 (J0855-0714), which is the coolest known object beyond the Solar System as of today. We use publicly available data from the archives of the HST and the VLT to determine the emission of this source at 1.153 micron (F110W) and 1.575 micron (CH_4). J0855-0714 is detected at both wavelengths with signal-to-noise ratio of ~10 (F110W) and ~4 (CH_4-off) at the peak of the corresponding PSFs. This is the first detection of J0855-0714 in the H-band. We measure 26.31 +/- 0.10 and 23.22 +/- 0.35 mag in F110W and CH_4 (Vega system). J0855-0714 remains unresolved in the HST images that have a spatial resolution of 0.22. Companions at separations of 0.5 AU (similar brightness) and at ~1 AU (~1 mag fainter in the F110W filter) are discarded. By combining the new data with published photometry, we build the spectral energy distribution of J0855-0714 from 0.89 to 22.09 micron, and contrast it against state-of-the-art solar-metallicity models of planetary atmospheres. We determine a temperature of 225-250 K, a bolometric luminosity of log L/Lsol = -8.57, and a high surface gravity of log g = 5.0 (cm/s2), which suggests an old age although such a high gravity is not fully compatible with evolutionary models. After comparison with the cooling theory for brown dwarfs and planets, we infer a mass in the interval 2-10 Mjup for ages of 1-12 Gyr and log g > 3.5 (cm/s2). At the age of the Sun, J0855-0714 would be a ~5-Mjup free-floating planetary-mass object. J0855-0714 may represent the old image of the free-floating planetary-mass objects of similar mass discovered in star-forming regions and young stellar clusters. As many J0855-0714-like objects as M5-L2 stars may be expected to populate the solar neighborhood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا