Do you want to publish a course? Click here

High-Cadence, High-Contrast Imaging for Exoplanet Mapping: Observations of the HR 8799 Planets with VLT/SPHERE Satellite Spot-Corrected Relative Photometry

149   0   0.0 ( 0 )
 Added by Daniel Apai Dr
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that PCA-based KLIP reduction with satellite spot-modulated artificial planet-injection based photometry (SMAP) leads to a significant (~3x) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our dataset, the signal-to-noise of which is limited by small field rotation. Relative planet-to-planet photometry can be compared be- tween nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b-c planet pair agree to about 1%.



rate research

Read More

The planets HR8799bc display nearly identical colours and spectra as variable young exoplanet analogues such as VHS 1256-1257ABb and PSO J318.5-22, and are likely to be similarly variable. Here we present results from a 5-epoch SPHERE IRDIS broadband-$H$ search for variability in these two planets. HR 8799b aperture photometry and HR 8799bc negative simulated planet photometry share similar trends within uncertainties. Satellite spot lightcurves share the same trends as the planet lightcurves in the August 2018 epochs, but diverge in the October 2017 epochs. We consider $Delta(mag)_{b} - Delta(mag)_{c}$ to trace non-shared variations between the two planets, and rule out non-shared variability in $Delta(mag)_{b} - Delta(mag)_{c}$ to the 10-20$%$ level over 4-5 hours. To quantify our sensitivity to variability, we simulate variable lightcurves by inserting and retrieving a suite of simulated planets at similar radii from the star as HR 8799bc, but offset in position angle. For HR 8799b, for periods $<$10 hours, we are sensitive to variability with amplitude $>5%$. For HR 8799c, our sensitivity is limited to variability $>25%$ for similar periods.
72 - A. Vigan , C. Gry , G. Salter 2015
Sirius has always attracted a lot of scientific interest, especially after the discovery of a companion white dwarf at the end of the 19th century. Very early on, the existence of a potential third body was put forward to explain some of the observed properties of the system. We present new coronagraphic observations obtained with VLT/SPHERE that explore, for the very first time, the innermost regions of the system down to 0.2 (0.5 AU) from Sirius A. Our observations cover the near-infrared from 0.95 to 2.3 $mu$m and they offer the best on-sky contrast ever reached at these angular separations. After detailing the steps of our SPHERE/IRDIFS data analysis, we present a robust method to derive detection limits for multi-spectral data from high-contrast imagers and spectrographs. In terms of raw performance, we report contrasts of 14.3 mag at 0.2, ~16.3 mag in the 0.4-1.0 range and down to 19 mag at 3.7. In physical units, our observations are sensitive to giant planets down to 11 $M_{Jup}$ at 0.5 AU, 6-7 $M_{Jup}$ in the 1-2 AU range and ~4 $M_{Jup}$ at 10 AU. Despite the exceptional sensitivity of our observations, we do not report the detection of additional companions around Sirius A. Using a Monte Carlo orbital analysis, we show that we can reject, with about 50% probability, the existence of an 8 $M_{Jup}$ planet orbiting at 1 AU. In addition to the results presented in the paper, we provide our SPHERE/IFS data reduction pipeline at http://people.lam.fr/vigan.arthur/ under the MIT license.
Recent high-contrast imaging surveys, looking for planets in young, nearby systems showed evidence of a small number of giant planets at relatively large separation beyond typically 20 au where those surveys are the most sensitive. Access to smaller physical separations between 5 and 20 au is the next step for future planet imagers on 10 m telescopes and ELTs in order to bridge the gap with indirect techniques (radial velocity, transit, astrometry with Gaia). In that context, we recently proposed a new algorithm, Keplerian-Stacker, combining multiple observations acquired at different epochs and taking into account the orbital motion of a potential planet present in the images to boost the ultimate detection limit. We showed that this algorithm is able to find planets in time series of simulated images of SPHERE even when a planet remains undetected at one epoch. Here, we validate the K-Stacker algorithm performances on real SPHERE datasets, to demonstrate its resilience to instrumental speckles and the gain offered in terms of true detection. This will motivate future dedicated multi-epoch observation campaigns in high-contrast imaging to search for planets in emitted and reflected light. Results. We show that K-Stacker achieves high success rate when the SNR of the planet in the stacked image reaches 7. The improvement of the SNR ratio goes as the square root of the total exposure time. During the blind test and the redetection of HD 95086 b, and betaPic b, we highlight the ability of K-Stacker to find orbital solutions consistent with the ones derived by the state of the art MCMC orbital fitting techniques, confirming that in addition to the detection gain, K-Stacker offers the opportunity to characterize the most probable orbital solutions of the exoplanets recovered at low signal to noise.
166 - Z. Wahhaj , J. Milli , C. Romero 2021
The direct imaging of extrasolar giant planets demands the highest possible contrasts (dH ~10 magnitudes) at the smallest angular separations (~0.1) from the star. We present an adaptive optics observing method, called star-hopping, recently offered as standard queue observing for the SPHERE instrument at the VLT. The method uses reference difference imaging (RDI) but unlike earlier works, obtains images of a reference star for PSF subtraction, within minutes of observing the target star. We aim to significantly gain in contrast over the conventional angular differencing imaging (ADI) method, to search for a fifth planet at separations less than 10 au, interior to the four giant planets of the HR 8799 system. We obtained a total of 4.5 hours of simultaneous integral field spectroscopy (R~30, Y-H band with IFS) and dual-band imaging (K1 and K2-band with IRDIS) of the HR 8799 system and a reference star. The reference star was observed for ~1/3 of the total time, and should have dR~1 mag and separated on sky by ~1-2 deg. The star hops were made every 6-10 minutes, with only 1 minute gaps in on-sky integration per hop. We did not detect the hypothetical fifth planet at the most plausible separations, 7.5 and 9.7 au, down to mass limits of 3.6 MJup high signal-to-noise ratios. As noted in previous works, the planet spectra are matched very closely by some red field dwarfs. We also demonstrated that with star-hopping RDI, the contrast improvement at 0.1 separation can be up to 2 magnitudes. Since ADI, meridian transit and the concomitant sky rotation are not needed, the time of observation can be chosen from within a 2-3 times larger window. In general, star-hopping can be used for stars fainter than R=4 magnitudes, since for these a reference star of suitable brightness and separation is usually available. The reduction software used in this paper has been made available online.
Using the Keck Planet Imager and Characterizer (KPIC), we obtained high-resolution (R$sim$35,000) $K$-band spectra of the four planets orbiting HR 8799. We clearly detected water{} and CO in the atmospheres of HR 8799 c, d, and e, and tentatively detected a combination of CO and water{} in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forward modeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihood-based approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measured $vsin(i)$ values of $10.1^{+2.8}_{-2.7}$~km/s for HR 8799 d and $15.0^{+2.3}_{-2.6}$~km/s for HR 8799 e, and placed an upper limit of $< 14$~km/s of HR 8799 c. Under two different assumptions of their obliquities, we found tentative evidence that rotation velocity is anti-correlated with companion mass, which could indicate that magnetic braking with a circumplanetary disk at early times is less efficient at spinning down lower mass planets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا