The low energy effective field model for the multilayer graphene (at ABC stacking) is considered. We calculate the effective action in the presence of constant external magnetic field $B$ (normal to the graphene sheet). We also calculate the first two corrections to this effective action caused by the in-plane electric field $E$ at $E/B ll 1$ and discuss the magnetoelectric effect. In addition, we calculate the imaginary part of the effective action in the presence of constant electric field $E$ and the lowest order correction to it due to the magnetic field ($B/E ll 1$).
With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene field-effect transistors. We find a very particular thickness dependence for Ion, Ioff, and the Ion/Ioff ratio, and propose a resistor network model including screening and interlayer coupling to explain the experimental findings. In particular, our model does not invoke modification of the linear energy-band structure of graphene for the multilayer case. Noise reduction in nano-scale few-layer graphene transistors is experimentally demonstrated and can be understood within this model as well.
The mean-square width of the energy profile of bosonic string is calculated considering two boundary terms in the effective action. The perturbative expansion of the Lorentz-invariant boundary terms at the second and the fourth order in the effective action is taken around the free Nambu-Goto action. The calculation are presented for open strings with Dirichlet boundary condition on cylinder.
We study the electronic structures and topological properties of $(M+N)$-layer twisted graphene systems. We consider the generic situation that $N$-layer graphene is placed on top of the other $M$-layer graphene, and is twisted with respect to each other by an angle $theta$. In such twisted multilayer graphene (TMG) systems, we find that there exists two low-energy flat bands for each valley emerging from the interface between the $M$ layers and the $N$ layers. These two low-energy bands in the TMG system possess valley Chern numbers that are dependent on both the number of layers and the stacking chiralities. In particular, when the stacking chiralities of the $M$ layers and $N$ layers are opposite, the total Chern number of the two low-energy bands for each valley equals to $pm(M+N-2)$ (per spin). If the stacking chiralities of the $M$ layers and the $N$ layers are the same, then the total Chern number of the two low-energy bands for each valley is $pm(M-N)$ (per spin). The valley Chern numbers of the low-energy bands are associated with large, valley-contrasting orbital magnetizations, suggesting the possible existence of orbital ferromagnetism and anomalous Hall effect once the valley degeneracy is lifted either externally by a weak magnetic field or internally by Coulomb interaction through spontaneous symmetry breaking.
We discuss quantum electrodynamics emerging in the vacua with anisotropic scaling. Systems with anisotropic scaling were suggested by Horava in relation to the quantum theory of gravity. In such vacua the space and time are not equivalent, and moreover they obey different scaling laws, called the anisotropic scaling. Such anisotropic scaling takes place for fermions in bilayer graphene, where if one neglects the trigonal warping effects the massless Dirac fermions have quadratic dispersion. This results in the anisotropic quantum electrodynamics, in which electric and magnetic fields obey different scaling laws. Here we discuss the Heisenberg-Euler action and Schwinger pair production in such anisotropic QED
M. I. Katsnelson
,G. E. Volovik
,M. A. Zubkov
.
(2012)
.
"Euler - Heisenberg effective action and magnetoelectric effect in multilayer graphene"
.
Mikhail Zubkov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا