Do you want to publish a course? Click here

Tree decomposition and parameterized algorithms for RNA structure-sequence alignment including tertiary interactions and pseudoknots

365   0   0.0 ( 0 )
 Added by Yann Ponty
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We present a general setting for structure-sequence comparison in a large class of RNA structures that unifies and generalizes a number of recent works on specific families on structures. Our approach is based on tree decomposition of structures and gives rises to a general parameterized algorithm, where the exponential part of the complexity depends on the family of structures. For each of the previously studied families, our algorithm has the same complexity as the specific algorithm that had been given before.



rate research

Read More

An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the queue number of $G$. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph $G$ has queue number $1$ and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of $G$. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary $h$.
We propose a new topological characterization of RNA secondary structures with pseudoknots based on two topological invariants. Starting from the classic arc-representation of RNA secondary structures, we consider a model that couples both I) the topological genus of the graph and II) the number of crossing arcs of the corresponding primitive graph. We add a term proportional to these topological invariants to the standard free energy of the RNA molecule, thus obtaining a novel free energy parametrization which takes into account the abundance of topologies of RNA pseudoknots observed in RNA databases.
184 - G. Vernizzi , H. Orland , A. Zee 2004
In this paper we consider the problem of RNA folding with pseudoknots. We use a graphical representation in which the secondary structures are described by planar diagrams. Pseudoknots are identified as non-planar diagrams. We analyze the non-planar topologies of RNA structures and propose a classification of RNA pseudoknots according to the minimal genus of the surface on which the RNA structure can be embedded. This classification provides a simple and natural way to tackle the problem of RNA folding prediction in presence of pseudoknots. Based on that approach, we describe a Monte Carlo algorithm for the prediction of pseudoknots in an RNA molecule.
Motivation: The ability to generate massive amounts of sequencing data continues to overwhelm the processing capability of existing algorithms and compute infrastructures. In this work, we explore the use of hardware/software co-design and hardware acceleration to significantly reduce the execution time of short sequence alignment, a crucial step in analyzing sequenced genomes. We introduce Shouji, a highly-parallel and accurate pre-alignment filter that remarkably reduces the need for computationally-costly dynamic programming algorithms. The first key idea of our proposed pre-alignment filter is to provide high filtering accuracy by correctly detecting all common subsequences shared between two given sequences. The second key idea is to design a hardware accelerator that adopts modern FPGA (Field-Programmable Gate Array) architectures to further boost the performance of our algorithm. Results: Shouji significantly improves the accuracy of pre-alignment filtering by up to two orders of magnitude compared to the state-of-the-art pre-alignment filters, GateKeeper and SHD. Our FPGA-based accelerator is up to three orders of magnitude faster than the equivalent CPU implementation of Shouji. Using a single FPGA chip, we benchmark the benefits of integrating Shouji with five state-of-the-art sequence aligners, designed for different computing platforms. The addition of Shouji as a pre-alignment step reduces the execution time of the five state-of-the-art sequence aligners by up to 18.8x. Shouji can be adapted for any bioinformatics pipeline that performs sequence alignment for verification. Unlike most existing methods that aim to accelerate sequence alignment, Shouji does not sacrifice any of the aligner capabilities, as it does not modify or replace the alignment step. Availability: https://github.com/CMU-SAFARI/Shouji
96 - Jingwei Liu 2021
CovID-19 genetics analysis is critical to determine virus type,virus variant and evaluate vaccines. In this paper, SARS-Cov-2 RNA sequence analysis relative to region or territory is investigated. A uniform framework of sequence SVM model with various genetics length from short to long and mixed-bases is developed by projecting SARS-Cov-2 RNA sequence to different dimensional space, then scoring it according to the output probability of pre-trained SVM models to explore the territory or origin information of SARS-Cov-2. Different sample size ratio of training set and test set is also discussed in the data analysis. Two SARS-Cov-2 RNA classification tasks are constructed based on GISAID database, one is for mainland, Hongkong and Taiwan of China, and the other is a 6-class classification task (Africa, Asia, Europe, North American, South American& Central American, Ocean) of 7 continents. For 3-class classification of China, the Top-1 accuracy rate can reach 82.45% (train 60%, test=40%); For 2-class classification of China, the Top-1 accuracy rate can reach 97.35% (train 80%, test 20%); For 6-class classification task of world, when the ratio of training set and test set is 20% : 80% , the Top-1 accuracy rate can achieve 30.30%. And, some Top-N results are also given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا