Do you want to publish a course? Click here

Scaling of the physical properties in Ba(Fe,Ni)2As2 single crystals: Evidence for quantum fluctuations

209   0   0.0 ( 0 )
 Added by Pierre Rodiere
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on local magnetization, tunnel diode oscillators, and specific-heat measurements in a series of Ba(NixFe1-x)2As2 single crystals (0.26leqxleq0.74). We show that the London penetration depth lambda(T)=lambda(0)+Deltalambda(T) scales as lambda(0)propto1/Tc0.85$pm$0.2, Deltalambda(T)proptoT2.3$pm$0.3 (for T



rate research

Read More

173 - N. Ni , A. Thaler , A. Kracher 2009
Single crystalline Ba(Fe(1-x)TMx)2As2 (TM = Rh, Pd) series have been grown and characterized by structural, thermodynamic and transport measurements. These measurements show that the structural/magnetic phase transitions, found in pure BaFe2As2 at 134 K, are suppressed monotonically by the doping and that superconductivity can be stablized over a dome-like region. Temperature-composition (T-x) phase diagrams based on electrical transport and magnetization measurements are constructed and compared to those of the Ba(Fe(1-x)TMx)2As2 (TM = Co, Ni) series. Despite the generic difference between 3d and 4d shells and the specific, conspicuous differences in the changes to the unit cell parameters, the effects of Rh doping are exceptionally similar to the effects of Co doping and the effects of Pd doping are exceptionally similar to the effects of Ni doping. These data show that whereas the structural / antiferromagnetic phase transition temperatures can be parameterized by x and the superconducting transition temperature can be parameterized by some combination of x and e, the number of extra electrons associated with the TM doping, the transition temperatures of 3d- and 4d- doped BaFe2As2 can not be simply parameterized by the changes in the unit cell dimensions or their ratios.
351 - N. Ni , A. Thaler , J. Q. Yan 2010
Microscopic, structural, transport and thermodynamic measurements of single crystalline Ba(Fe1-xTMx)2As2 (TM = Ni and Cu) series, as well as two mixed TM = Cu / Co series, are reported. All the transport and thermodynamic measurements indicate that the structural and magnetic phase transitions at 134 K in pure BaFe2As2 are monotonically suppressed and increasingly separated in a similar manner by these dopants. In the Ba(Fe1-xNix)2As2 (x =< 0.072), superconductivity, with Tc up to 19 K, is stabilized for 0.024 =< x =< 0.072. In the Ba(Fe1-xCux)2As2 (x =< 0.356) series, although the structural and magnetic transitions are suppressed, there is only a very limited region of superconductivity: a sharp drop of the resistivity to zero near 2.1 K is found only for the x = 0.044 samples. In the Ba(Fe1-x-yCoxCuy)2As2 series, superconductivity, with Tc values up to 12 K (x ~ 0.022 series) and 20 K (x ~ 0.047 series), is stabilized. Quantitative analysis of the detailed temperature-dopant concentration (T-x) and temperature-extra electrons (T-e) phase diagrams of these series shows that there exists a limited range of the number of extra electrons added, inside which the superconductivity can be stabilized if the structural and magnetic phase transitions are suppressed enough. Moreover, comparison with pressure-temperature phase diagram data, for samples spanning the whole doping range, further reenforces the conclusion that suppression of the structural / magnetic phase transition temperature enhances Tc on the underdoped side, but for the overdoped side Tcmax is determined by e. Therefore, by choosing the combination of dopants that are used, we can adjust the relative positions of the upper phase lines (structural and magnetic phase transitions) and the superconducting dome to control the occurrence and disappearance of the superconductivity in transition metal, electron-doped BaFe2As2.
178 - A. Thaler , N. Ni , A. Kracher 2010
Single crystals of Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$, $x<0.37$, have been grown and characterized by structural, magnetic and transport measurements. These measurements show that the structural/magnetic phase transition found in pure BaFe$_2$As$_2$ at 134 K is suppressed monotonically by Ru doping, but, unlike doping with TM=Co, Ni, Cu, Rh or Pd, the coupled transition seen in the parent compound does not detectably split into two separate ones. Superconductivity is stabilized at low temperatures for $x>0.2$ and continues through the highest doping levels we report. The superconducting region is dome like, with maximum T$_c$ ($sim16.5$ K) found around $xsim 0.29$. A phase diagram of temperature versus doping, based on electrical transport and magnetization measurements, has been constructed and compared to those of the Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ (TM=Co, Ni, Rh, Pd) series as well as to the temperature-pressure phase diagram for pure BaFe$_2$As$_2$. Suppression of the structural/magnetic phase transition as well as the appearance of superconductivity is much more gradual in Ru doping, as compared to Co, Ni, Rh and Pd doping, and appears to have more in common with BaFe$_2$As$_2$ tuned with pressure; by plotting $T_S/T_m$ and $T_c$ as a function of changes in unit cell dimensions, we find that changed in the $c/a$ ratio, rather than changes in $c$, $a$ or V, unify the $T(p)$ and $T(x)$ phase diagrams for BaFe$_2$As$_2$ and Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ respectively.
147 - R. T. Gordon , N. Ni , C. Martin 2008
The London penetration depth, $lambda(T)$, has been measured in several single crystals of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$. Thermodynamic, electromagnetic, and structural characterization measurements confirm that these crystals are of excellent quality. The observed low temperature variation of $lambda(T)$ follows a power-law, $Delta lambda (T) sim T^n$ with $n=2.4 pm 0.1$, indicating the existence of normal quasiparticles down to at least $0.02T_c$. This is in contrast to recent penetration depth measurements on single crystals of NdFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1-x}$F$_x$, which indicate an anisotropic but nodeless gap. We propose that a more three-dimensional character in the electronic structure of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$ may lead to an anisotropic $s-$wave gap with point nodes that would explain the observed $lambda(T)$.
Single crystals of Ba(Fe_(1-x)Mn_x)_2As_2, 0<x<0.148, have been grown and characterized by structural, magnetic, electrical transport and thermopower measurements. Although growths of single crystals of Ba(Fe_(1-x)Mn_x)_2As_2 for the full 0<=x<=1 range were made, we find evidence for phase separation (associated with some form of immiscibility) starting for x>0.1-0.2. Our measurements show that whereas the structural/magnetic phase transition found in pure BaFe_2As_2 at 134 K is initially suppressed by Mn substitution, superconductivity is not observed at any substitution level. Although the effect of hydrostatic pressure up to 20 kbar in the parent BaFe_2As_2 compound is to suppress the structural/magnetic transition at the approximate rate of 0.9 K/kbar, the effects of pressure and Mn substitution in the x=0.102 compound are not cumulative. Phase diagrams of transition temperature versus substitution concentration, x, based on electrical transport, magnetization and thermopower measurements have been constructed and compared to those of the Ba(Fe_(1-x)TM_x)_2As_2 (TM=Co and Cr) series.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا