Do you want to publish a course? Click here

Unconventional London penetration depth in Ba(Fe0.93Co0.07)2As2 single crystals

156   0   0.0 ( 0 )
 Added by Ruslan Prozorov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The London penetration depth, $lambda(T)$, has been measured in several single crystals of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$. Thermodynamic, electromagnetic, and structural characterization measurements confirm that these crystals are of excellent quality. The observed low temperature variation of $lambda(T)$ follows a power-law, $Delta lambda (T) sim T^n$ with $n=2.4 pm 0.1$, indicating the existence of normal quasiparticles down to at least $0.02T_c$. This is in contrast to recent penetration depth measurements on single crystals of NdFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1-x}$F$_x$, which indicate an anisotropic but nodeless gap. We propose that a more three-dimensional character in the electronic structure of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$ may lead to an anisotropic $s-$wave gap with point nodes that would explain the observed $lambda(T)$.



rate research

Read More

We present small-angle neutron scattering (SANS) and Bitter decoration studies of the superconducting vortices in Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$}. A highly disordered vortex configuration is observed at all measured fields, and is attributed to strong pinning. This conclusion is supported by the absence of a Meissner rim in decoration images obtained close to the sample edge. The field dependence of the magnitude of the SANS scattering vector indicates vortex lattice domains of (distorted) hexagonal symmetry, consistent with the decoration images which show primarily 6-fold coordinated vortex domains. An analysis of the scattered intensity shows that this decreases much more rapidly than expected from estimates of the upper critical field, consistent with the large degree of disorder.
In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, $lambda (T) T^n$, with the sample-dependent exponent n=2-2.5, which is indicative of unconventional pairing. This scenario could be possible either through scattering in a $s_{pm }$ state or due to nodes in the superconducting gap. In the Nd-1111 system, the interpretation of data may be obscured by the magnetism of rare-earth ions. The overall anisotropy of the pnictide superconductors is small. The 1111 system is about two times more anisotropic than the 122 system. Our data and analysis suggest that the iron-based pnictides are complex superconductors in which a multiband three-dimensional electronic structure and strong magnetic fluctuations play important roles.
195 - C. Martin , M. E. Tillman , H. Kim 2009
The superconducting penetration depth, $lambda(T)$, has been measured in RFeAsO$_{0.9}$F$_{0.1}$ (R=La,Nd) single crystals (R-1111). In Nd-1111, we find an upturn in $lambda(T)$ upon cooling and attribute it to the paramagnetism of the Nd ions, similar to the case of the electron-doped cuprate Nd-Ce-Cu-O. After the correction for paramagnetism, the London penetration depth variation is found to follow a power-law behavior, $Delta lambda_L(T)propto T^{2}$ at low temperatures. The same $T^2$ variation of $lambda(T)$ was found in non-magnetic La-1111 crystals. Analysis of the superfluid density and of penetration depth anisotropy over the full temperature range is consistent with two-gap superconductivity. Based on this and on our previous work, we conclude that both the RFeAsO (1111) and BaFe$_2$As$_2$ (122) families of pnictide superconductors exhibit unconventional two-gap superconductivity.
The temperature dependence of the in-plane, lambda_{parallel}, and interplane, lambda_{perp}, London penetration depth was measured in the metal-free all-organic superconductor beta-ET (see title) ($T_c approx$ 5.2 K). lambda_{parallel} ~T^3 up to 0.5 Tc, a power law previously observed only in materials thought to be p-wave superconductors. lambda_{perp} is larger than the sample dimensions down to the lowest temperatures (0.35 K), implying an anisotropy of lambda_{perp}/lambda_{parallel} ~ 400-800.
The London penetration depth $lambda$ is the basic length scale for electromagnetic behavior in a superconductor. Precise measurements of $lambda$ as a function of temperature, field, and impurity scattering have been instrumental in revealing the nature of the order parameter and pairing interactions in a variety of superconductors discovered over the past decades. Here we recount our development of the tunnel-diode resonator technique to measure $lambda$ as a function of temperature and field in small single crystal samples. We discuss the principles and applications of this technique to study unconventional superconductivity in the copper oxides and other materials such as iron-based superconductors. The technique has now been employed by several groups worldwide as a precision measurement tool for the exploration of new superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا