No Arabic abstract
The X-ray flux of Nova V2491 Cyg reached a maximum some forty days after optical maximum. The X-ray spectrum at that time, obtained with the RGS of XMM-Newton, shows deep, blue-shifted absorption by ions of a wide range of ionization. We show that the deep absorption lines of the X-ray spectrum at maximum, and nine days later, are well described by the following phenomenological model with emission from a central blackbody and from a collisionally ionized plasma (CIE). The blackbody spectrum (BB) is absorbed by three main highly-ionized expanding shells; the CIE and BB are absorbed by cold circumstellar and interstellar matter that includes dust. The outflow density does not decrease monotonically with distance. The abundances of the shells indicate that they were ejected from an O-Ne white dwarf. We show that the variations on time scales of hours in the X-ray spectrum are caused by a combination of variation in the central source and in the column density of the ionized shells. Our phenomenological model gives the best description so far of the supersoft X-ray spectrum of nova V2491 Cyg, but underpredicts, by a large factor, the optical and ultraviolet flux. The X-ray part of the spectrum must originate from a very different layer in the expanding envelope, presumably much closer to the white dwarf than the layers responsible for the optical/ultraviolet spectrum. This is confirmed by absence of any correlation between the X-ray and UV/optical observed fluxes.
We conducted an X-ray spectroscopic study of the classical nova V2491 Cygni using our target-of-opportunity observation data with the Suzaku and XMM-Newton satellites as well as archived data with the Swift satellite. Medium-resolution (R~10-50) spectra were obtained using the X-ray CCD spectrometers at several post-nova epochs on days 9, 29, 40, 50, and 60-150 in addition to a pre-nova interval between days -322 and -100 all relative to the time when the classical nova was spotted. We found remarkable changes in the time series of the spectra: (a) In the pre-nova phase and on day 9, the 6.7 keV emission line from Fe XXV was significantly detected. (b) On day 29, no such emission line was found. (c) On day 40, the 6.7 keV emission line emerged again. (d) On days 50 and 60-150, three emission lines at 6.4, 6.7, and 7.0 keV respectively from quasi-neutral Fe, Fe XXV, and Fe XXVI were found. Statistically significant changes of the Fe K line intensities were confirmed between day 29 and 50. Based on these phenomena, we conclude that (1) the post-nova evolution can be divided into two different phases, (2) ejecta is responsible for the X-ray emission in the earlier phase, while rekindled accretion is for the later phase, and (3) the accretion process is considered to be reestablished as early as day 50 when the quasi-neutral Fe emission line emerged, which is a common signature of accretion from magnetic cataclysmic variables.
Nova V2491 Cyg is one of just two detected pre-outburst in X-rays. The light curve of this nova exhibited a rare re-brightening which has been attributed by some as the system being a polar, whilst others claim that a magnetic WD is unlikely. By virtue of the nature of X-ray and spectroscopic observations the system has been proposed as a recurrent nova, however the adoption of a 0.1 day orbital period is generally seen as incompatible with such a system. In this research note we address the nature of the progenitor system and the source of the 0.1 day periodicity. Through the combination of Liverpool Telescope observations with published data and archival 2MASS data we show that V2491 Cyg, at a distance of 10.5 - 14 kpc, is likely to be a recurrent nova of the U Sco-class; containing a sub-giant secondary and an accretion disk, rather than accretion directly onto the poles. We show that there is little evidence, at quiescence, supporting a ~ 0.1 day periodicity, the variation seen at this stage is likely caused by flickering of a re-established accretion disk. We propose that the periodicity seen shortly after outburst is more likely related to the outburst rather than the - then obscured - binary system. Finally we address the distance to the system, and show that a significantly lower distance (~ 2 kpc) would result in a severely under-luminous outburst, and as such favour the larger distance and the recurrent nova scenario.
We present extensive, high-density Swift observations of V2491 Cyg (Nova Cyg 2008 No. 2). Observing the X-ray emission from only one day after the nova discovery, the source is followed through the initial brightening, the Super-Soft Source phase and back to the pre-outburst flux level. The evolution of the spectrum throughout the outburst is demonstrated. The UV and X-ray light-curves follow very different paths, although changes occur in them around the same times, indicating a link between the bands. Flickering in the late-time X-ray data indicates the resumption of accretion. We show that if the white dwarf is magnetic, it would be among the most magnetic known; the lack of a periodic signal in our later data argues against a magnetic white dwarf, however. We also discuss the possibility that V2491 Cyg is a recurrent nova, providing recurrence timescale estimates.
Two XMM observations of the fast classical nova V2491Cyg were carried out on days 39.93 and 49.62 after discovery, during the supersoft source (SSS) phase, yielding simultaneous X-ray and UV light curves and high-resolution X-ray spectra. The first X-ray light curve is highly variable with periodic oscillations (37.2 min) after an extended dip of factor of three lasting ~3 hours. The cause of the dip is currently unexplained and could have the same origin as similar events in V4743Sgr and RSOph, as it occurred on the same time scale. The 37-min period is not present during the dip and also not in the second observation. The UV light curves are variable but contain no dips and no period. High-resolution X-ray spectra are presented for 4 intervals of different intensity. All spectra are atmospheric continua with absorption lines and absorption edges. Interstellar lines of OI and NI are seen at their rest wavelengths, and a large number of high-ionization absorption lines are found at blue shifts indicating an expansion velocity of 3000-3400 km/s, which does not change significantly during the epochs of observation. Comparisons with the slower nova V4743Sgr and the symbiotic recurrent nova RSOph are presented. The SSS spectrum of V4743Sgr is much softer with broader and more complex photospheric absorption lines. Meanwhile, the absorption lines in RSOph are as narrow as in V2491Cyg, but they are less blue shifted. A remarkable similarity in the continua of V2491Cyg and RSOph is found. The only differences are smaller line shifts and additional emission lines in RSOph that are related to a dense stellar wind from the evolved companion. Three unidentified absorption lines are present in the X-ray spectra of all three novae, with rest wavelengths 26.05AA, 29.45AA, and 30.0AA. No satisfactory spectral model is currently available for the soft X-ray spectra of novae in outburst.
We present a dynamical study of the Galactic black hole binary system Nova Muscae 1991 (GS/GRS 1124-683). We utilize 72 high resolution Magellan Echellette (MagE) spectra and 72 strictly simultaneous V-band photometric observations; the simultaneity is a unique and crucial feature of this dynamical study. The data were taken on two consecutive nights and cover the full 10.4-hour orbital cycle. The radial velocities of the secondary star are determined by cross-correlating the object spectra with the best-match template spectrum obtained using the same instrument configuration. Based on our independent analysis of five orders of the echellette spectrum, the semi-amplitude of the radial velocity of the secondary is measured to be K_2 = 406.8+/-2.7 km/s, which is consistent with previous work, while the uncertainty is reduced by a factor of 3. The corresponding mass function is f(M) = 3.02+/-0.06 M_odot. We have also obtained an accurate measurement of the rotational broadening of the stellar absorption lines (v sin i = 85.0+/-2.6 km/s) and hence the mass ratio of the system q = 0.079+/-0.007. Finally, we have measured the spectrum of the non-stellar component of emission that veils the spectrum of the secondary. In a future paper, we will use our veiling-corrected spectrum of the secondary and accurate values of K_2 and q to model multi-color light curves and determine the systemic inclination and the mass of the black hole.