Do you want to publish a course? Click here

Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records

133   0   0.0 ( 0 )
 Added by Attal Stephane
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Open Quantum Random Walks, as developed in cite{APSS}, are a quantum generalization of Markov chains on finite graphs or on lattices. These random walks are typically quantum in their behavior, step by step, but they seem to show up a rather classical asymptotic behavior, as opposed to the quantum random walks usually considered in Quantum Information Theory (such as the well-known Hadamard random walk). Typically, in the case of Open Quantum Random Walks on lattices, their distribution seems to always converge to a Gaussian distribution or a mixture of Gaussian distributions. In the case of nearest neighbors homogeneous Open Quantum Random Walks on $ZZ^d$ we prove such a Central Limit Theorem, in the case where only one Gaussian distribution appears in the limit. Through the quantum trajectory point of view on quantum master equations, we transform the problem into studying a certain functional of a Markov chain on $ZZ^d$ times the Banach space of quantum states. The main difficulty is that we know nothing about the invariant measures of this Markov chain, even their existence. Surprisingly enough, we are able to produce a Central Limit Theorem with explicit drift and explicit covariance matrix. The interesting point which appears with our construction and result is that it applies actually to a wider setup: it provides a Central Limit Theorem for the sequence of recordings of the quantum trajectories associated to any completely positive map. This is what we show and develop as an application of our result. In a second step we are able to extend our Central Limit Theorem to the case of several asymptotic Gaussians, in the case where the operator coefficients of the quantum walk are block-diagonal in a common basis.



rate research

Read More

We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, forcing their convergence to the same, possibly random, limit. Random walks of this form have been introduced in the context of urn models and in stochastic approximation. We also propose an application to opinion dynamics in a random network evolving via preferential attachment. We study, in particular, random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. Under certain conditions, synchronization is faster than convergence.
324 - Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the quantum trajectory point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time- step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.
We study Random Walks in an i.i.d. Random Environment (RWRE) defined on $b$-regular trees. We prove a functional central limit theorem (FCLT) for transient processes, under a moment condition on the environment. We emphasize that we make no uniform ellipticity assumptions. Our approach relies on regenerative levels, i.e. levels that are visited exactly once. On the way, we prove that the distance between consecutive regenerative levels have a geometrically decaying tail. In the second part of this paper, we apply our results to Linearly Edge-Reinforced Random Walk (LERRW) to prove FCLT when the process is defined on $b$-regular trees, with $ b ge 4$, substantially improving the results of the first author (see Theorem 3 of Collevecchio (2006)).
We prove that all finite joint distributions of creation and annihilation operators in Monotone and anti-Monotone Fock spaces can be realized as Quantum Central Limit of certain operators on a $C^*$-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone $C^*$-algebras, the weight being the above cited test functions. The construction is then generalized to processes by an invariance principle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا