No Arabic abstract
We critically examine the evidence available of the early ideas on the bending of light due to a gravitational attraction, which led to the concept of gravitational lenses, and attempt to present an undistorted historical perspective. Contrary to a widespread but baseless claim, Newton was not the precursor to the idea, and the first Query in his {sl Opticks} is totally unrelated to this phenomenon. We briefly review the roles of Voltaire, Marat, Cavendish, Soldner and Einstein in their attempts to quantify the gravitational deflection of light. The first, but unpublished, calculations of the lensing effect produced by this deflection are found in Einsteins 1912 notebooks, where he derived the lensing equation and the formation of images in a gravitational lens. The brief 1924 paper by Chwolson which presents, without calculations, the formation of double images and rings by a gravitational lens passed mostly unnoticed. The unjustly forgotten and true pioneer of the subject is F. Link, who not only published the first detailed lensing calculations in 1936, nine months prior to Einsteins famous paper in {sl Science}, but also extended the theory to include the effects of finite-size sources and lenses, binary sources, and limb darkening that same year. Link correctly predicted that the microlensing effect would be easier to observe in crowded fields or in galaxies, as observations confirmed five decades later. The calculations made by Link are far more detailed than those by Tikhov and Bogorodsky. We discuss briefly some papers of the early 1960s which marked the renaissance of this theoretical subject prior to the first detection of a gravitational lens in 1979, and we conclude with the unpublished chapter of Petrous 1981 PhD thesis addressing the microlensing of stars in the Magellanic clouds by dark objects in the Galactic halo.
We study decoherence effects in neutrino flavor oscillations in curved spacetime with particular emphasis on the lensing in a Schwarzschild geometry. Assuming Gaussian wave packets for neutrinos, we argue that the decoherence length derived from the exponential suppression of the flavor transition probability depends on the proper time of the geodesic connecting the events of the production and detection in general gravitational setting. In the weak gravity limit, the proper time between two events of given proper distance is smaller than that in the flat spacetime. Therefore, in presence of a Schwarzschild object, the neutrino wave packets have to travel relatively more physical distance in space to lapse the same amount of proper time before they decoher. For non-radial propagation applicable to the lensing phenomena, we show that the decoherence, in general, is sensitive to the absolute values of neutrino masses as well as the classical trajectories taken by neutrinos between the source and detector along with the spatial widths of neutrino wave packets. At distances beyond the decoherence length, the probability of neutrino flavor transition due to lensing attains a value which depends only on the leptonic mixing parameters. Hence, the observability of neutrino lensing significantly depends on these parameters and in-turn the lensing can provide useful information about the latter.
In flat spacetime, the vacuum neutrino flavour oscillations are known to be sensitive only to the difference between the squared masses, and not to the individual masses, of neutrinos. In this work, we show that the lensing of neutrinos induced by a gravitational source substantially modifies this standard picture and it gives rise to a novel contribution through which the oscillation probabilities also depend on the individual neutrino masses. A gravitating mass located between a source and a detector deflects the neutrinos in their journey, and at a detection point, neutrinos arriving through different paths can lead to the phenomenon of interference. The flavour transition probabilities computed in the presence of such interference depend on the individual masses of neutrinos whenever there is a non-zero path difference between the interfering neutrinos. We demonstrate this explicitly by considering an example of weak lensing induced by a Schwarzschild mass. Through the simplest two flavour case, we show that the oscillation probability in the presence of lensing is sensitive to the sign of $Delta m^2 = m_2^2 -m_1^2$, for non-maximal mixing between two neutrinos, unlike in the case of standard vacuum oscillation in flat spacetime. Further, the probability itself oscillates with respect to the path difference and the frequency of such oscillations depends on the absolute mass scale $m_1$ or $m_2$. We also give results for realistic three flavour case and discuss various implications of gravitationally modified neutrino oscillations and means of observing them.
Automated searches for strong gravitational lensing in optical imaging survey datasets often employ machine learning and deep learning approaches. These techniques require more example systems to train the algorithms than have presently been discovered, which creates a need for simulated images as training dataset supplements. This work introduces and summarizes deeplenstronomy, an open-source Python package that enables efficient, large-scale, and reproducible simulation of images of astronomical systems. A full suite of unit tests, documentation, and example notebooks are available at https://deepskies.github.io/deeplenstronomy/ .
The current gravitational-wave localization methods rely mainly on sources with electromagnetic counterparts. Unfortunately, a binary black hole does not emit light. Due to this, it is generally not possible to localize these objects precisely. However, strongly lensed gravitational waves, which are forecasted in this decade, could allow us to localize the binary by locating its lensed host galaxy. Identifying the correct host galaxy is challenging because there are hundreds to thousands of other lensed galaxies within the sky area spanned by the gravitational-wave observation. However, we can constrain the lensing galaxys physical properties through both gravitational-wave and electromagnetic observations. We show that these simultaneous constraints allow one to localize quadruply lensed waves to one or at most a few galaxies with the LIGO/Virgo/Kagra network in typical scenarios. Once we identify the host, we can localize the binary to two sub-arcsec regions within the host galaxy. Moreover, we demonstrate how to use the system to measure the Hubble constant as a proof-of-principle application.
We are experiencing a period of extreme intellectual effervescence in the area of cosmology. A huge volume of observational data in unprecedented quantity and quality and a more consistent theoretical framework propelled cosmology to an era of precision, turning the discipline into a cutting-edge area of contemporary science. Observations with type Ia Supernovae (SNe Ia), showed that the expanding Universe is accelerating, an unexplained fact in the traditional decelerated model. Identifying the cause of this acceleration is the most fundamental problem in the area. As in the scientific renaissance, the solution will guide the course of the discipline in the near future and the possible answers (whether dark energy, some extension of general relativity or a still unknown mechanism) should also leverage the development of physics. In this context, without giving up a pedagogical approach, we present an overview of both the main theoretical results and the most significant observational discoveries of cosmology in the last 100 years. The saga of cosmology will be presented in a trilogy. In this article (Part I), based on the articles by Einstein, de Sitter, Friedmann, Lema^itre and Hubble, we will describe the period between the origins of cosmology and the discovery of Universal expansion (1929). In Part II, we will see the period from 1930 to 1997, closing with the old standard decelerated model. The Part III will be entirely devoted to the accelerated model of the universe, the cosmic paradigm of the XXI century.