No Arabic abstract
We report the discovery of quasi-periodic oscillations (QPO) at ~11 mHz in two RXTE observations and one Chandra observation of the black hole candidate H1743-322. The QPO is observed only at the beginning of the 2010 and 2011 outbursts at similar hard colour and intensity, suggestive of an accretion state dependence for the QPO. Although its frequency appears to be correlated with X-ray intensity on timescales of a day, in successive outbursts eight months apart we measure a QPO frequency that differs by less than ~2.2 mHz while the intensity had changed significantly. We show that this ~11 mHz QPO is different from the so-called Type-C QPOs seen in black holes and that the mechanisms that produce the two flavours of variability are most probably independent. After comparing this QPO with other variability phenomena seen in accreting black holes and neutron stars, we conclude that it best resembles the so-called 1 Hz QPOs seen in dipping neutron star systems, although having a significantly lower (1-2 orders of magnitude) frequency. If confirmed, H1743-322 is the first black hole showing this type of variability. Given the unusual characteristics and the hard-state dependence of the ~11 mHz QPO, we also speculate whether these oscillations could instead be related to the radio jets observed in H1743-322. A systematic search for this type of low-frequency QPOs in similar systems is needed to test this speculation. In any case, it remains unexplained why these QPOs have only been seen in the last two outbursts of H1743-322.
We observed the Galactic black hole candidate H1743-322 with Suzaku for approximately 32 ksec, while the source was in a low/hard state during its 2008 outburst. We collected and analyzed the data with the HXD/PIN, HXD/GSO and XIS cameras spanning the energy range from 0.7-200 keV. Fits to the spectra with simple models fail to detect narrow Fe XXV and Fe XXVI absorption lines, with 90% confidence upper limits of 3.5 eV and 2.5 eV on the equivalent width, respectively. These limits are commensurate with those in the very high state, but are well below the equivalent widths of lines detected in the high/soft state, suggesting that disk winds are partially state-dependent. We discuss these results in the context of previous detections of ionized Fe absorption lines in H1743-322 and connections to winds and jets in accreting systems. Additionally, we report the possible detection of disk reflection features, including an Fe K emission line.
An appearance or disappearance of QPOs associated with the variation of X-ray flux can be used to decipher the accretion ejection mechanism of black hole X-ray sources. We searched and studied such rapid transitions in H1743-322 using RXTE archival data and found eight such events, where QPO vanishes suddenly along with the variation of X-ray flux. The appearance/disappearance of QPOs were associated to the four events exhibiting type-B QPOs at $sim$ 4.5 Hz, one with type-A QPO at $ u$ $sim$ 3.5 Hz, and the remaining three were connected to type-C QPOs at $sim$ 9.5 Hz. Spectral studies of the data unveiled that an inner disk radius remained at the same location around 2-9 r$_g$ , depending on the used model but power-law indices were varying, indicating that either corona or jet is responsible for the events. The probable ejection radii of corona were estimated to be around 4.2-15.4 r$_g$ based on the plasma ejection model. Our X-ray and quasi-simultaneous radio correlation studies suggest that the type-B QPOs are probably related to the precession of a weak jet though a small and weak corona is present at its base and the type-C QPOs are associated to the base of a relatively strong jet which is acting like a corona.
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts, with a possible positive correlation with outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst, and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near the beginning and end of an outburst.
We report on a campaign of X-ray and soft gamma-ray observations of the black hole candidate H 1743-322 (also named IGR J17464-3213), performed with the RXTE, INTEGRAL and Swift satellites. The source was observed during a short outburst between 2008 October 03 and 2008 November 16. The evolution of the hardness-intensity diagram throughout the outburst is peculiar, in that it does not follow the canonical pattern through all the spectral states (the so called q-track pattern) seen during the outburst of black-hole transients. On the contrary, the source only makes a transition from the Hard State to the Hard-Intermediate State. After this transition, the source decreases in luminosity and its spectrum hardens again. This behaviour is confirmed both by spectral and timing analysis. This kind of outburst has been rarely observed before in a transient black hole candidate.
We present the results of the analysis of a large database of X-ray observations of 22 galactic black-hole transients with the Rossi X-Ray timing explorer throughout its operative life for a total exposure time of ~12 Ms. We excluded persistent systems and the peculiar source GRS 1915+105, as well as the most recently discovered sources. The semi-automatic homogeneous analysis was aimed at the detection of high-frequency (100-1000 Hz) quasi-periodic oscillations (QPO), of which several cases were previously reported in the literature. After taking into account the number of independent trials, we obtained 11 detections from two sources only: XTE J1550-564 and GRO J1655-40. For the former, the detected frequencies are clustered around 180 Hz and 280 Hz, as previously found. For the latter, the previously-reported dichotomy 300-450 Hz is found to be less sharp. We discuss our results in comparison with kHz QPO in neutron-star X-ray binaries and the prospects for future timing X-ray missions.