No Arabic abstract
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts, with a possible positive correlation with outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst, and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near the beginning and end of an outburst.
We observed the Galactic black hole candidate H1743-322 with Suzaku for approximately 32 ksec, while the source was in a low/hard state during its 2008 outburst. We collected and analyzed the data with the HXD/PIN, HXD/GSO and XIS cameras spanning the energy range from 0.7-200 keV. Fits to the spectra with simple models fail to detect narrow Fe XXV and Fe XXVI absorption lines, with 90% confidence upper limits of 3.5 eV and 2.5 eV on the equivalent width, respectively. These limits are commensurate with those in the very high state, but are well below the equivalent widths of lines detected in the high/soft state, suggesting that disk winds are partially state-dependent. We discuss these results in the context of previous detections of ionized Fe absorption lines in H1743-322 and connections to winds and jets in accreting systems. Additionally, we report the possible detection of disk reflection features, including an Fe K emission line.
We report on a campaign of X-ray and soft gamma-ray observations of the black hole candidate H 1743-322 (also named IGR J17464-3213), performed with the RXTE, INTEGRAL and Swift satellites. The source was observed during a short outburst between 2008 October 03 and 2008 November 16. The evolution of the hardness-intensity diagram throughout the outburst is peculiar, in that it does not follow the canonical pattern through all the spectral states (the so called q-track pattern) seen during the outburst of black-hole transients. On the contrary, the source only makes a transition from the Hard State to the Hard-Intermediate State. After this transition, the source decreases in luminosity and its spectrum hardens again. This behaviour is confirmed both by spectral and timing analysis. This kind of outburst has been rarely observed before in a transient black hole candidate.
In recent years, the black hole candidate X-ray binary system H1743-322 has undergone outbursts and it has been observed with X-ray and radio telescopes. We present 1.3 GHz MeerKAT radio data from the ThunderKAT Large Survey Project on radio transients for the 2018 outburst of H1743-322. We obtain seven detections from a weekly monitoring programme and use publicly available Swift X-ray Telescope and MAXI data to investigate the radio/X-ray correlation of H1743-322 for this outburst. We compare the 2018 outburst with those reported in the literature for this system and find that the X-ray outburst reported is similar to previously reported `hard-only outbursts. As in previous outbursts, H1743-322 follows the `radio-quiet correlation in the radio/X-ray plane for black hole X-ray binaries, and the radio spectral index throughout the outburst is consistent with the `radio-quiet population.
In studies of accreting black holes in binary systems, empirical relations have been proposed to quantify the coupling between accretion processes and ejection mechanisms. These processes are probed respectively by means of X-ray and radio/optical-infrared observations. The relations predict, given certain accretion conditions, the expected energy output in the form of a jet. We investigated this coupling by studying the black hole candidate Swift J1753.5-0127, via multiwavelength coordinated observations over a period of ~4 years. We present the results of our campaign showing that, all along the outburst, the source features a jet that is fainter than expected from the empirical correlation between the radio and the X-ray luminosities in hard spectral state. Because the jet is so weak in this system the near-infrared emission is, unusually for this state and luminosity, dominated by thermal emission from the accretion disc. We briefly discuss the importance and the implications of a precise determination of both the slope and the normalisation of the correlations, listing some possible parameters that broadband jet models should take into account to explain the population of sources characterized by a dim jet. We also investigate whether our data can give any hint about the nature of the compact object in the system, since its mass has not been dynamically measured.
MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array (ATCA), as well as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved towards the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically-moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to $leq 45^{circ}$ and $geq0.69$c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs $>$2.5 days before the first appearance of a possible type-B QPO.