We show how Jarzynski relation can be exploited to analyze the nature of order-disorder and a bifurcation type dynamical transition in terms of a response function derived on the basis of work distribution over non-equilibrium paths between two thermalized states. The validity of the response function extends over linear as well as nonlinear regime and far from equilibrium situations.
Non-equilibrium aspects of the BCS model have fascinated physicists for decades, from the seminal works of Eliashberg to modern realizations in cold atom experiments. The latter scenarios have lead to a great deal of interest in the quench dynamics of fermions with pairing interactions. The recently introduced notion of a dynamical quantum phase transition is an attempt to classify the myriad of possible phenomena which can result in such far from equilibrium systems. These are defined as non-analytic points of the logarithm of the Loschmidt echo and are linked to oscillations in the dynamics a systems order parameter. In this work we analytically investigate the relation between DQPTs and oscillation of the superconducting order parameter in quenches of the BCS model. We find that each oscillation of the order parameter is accompanied by a DQPT which is first order in nature. We show this for a variety of initial states and furthermore find that when the order parameter attains a constant steady state then no DQPTS occur.
We introduce a discrete-time quantum dynamics on a two-dimensional lattice that describes the evolution of a $1+1$-dimensional spin system. The underlying quantum map is constructed such that the reduced state at each time step is separable. We show that for long times this state becomes stationary and displays a continuous phase transition in the density of excited spins. This phenomenon can be understood through a connection to the so-called Domany-Kinzel automaton, which implements a classical non-equilibrium process that features a transition to an absorbing state. Near the transition density-density correlations become long-ranged, but interestingly the same is the case for quantum correlations despite the separability of the stationary state. We quantify quantum correlations through the local quantum uncertainty and show that in some cases they may be determined experimentally solely by measuring expectation values of classical observables. This work is inspired by recent experimental progress in the realization of Rydberg lattice quantum simulators, which - in a rather natural way - permit the realization of conditional quantum gates underlying the discrete-time dynamics discussed here.
By generalizing the traditional concept of heat dQ and work dW to also include their time-dependent irreversible components d_{i}Q and d_{i}W allows us to express them in terms of the instantaneous internal temperature T(t) and pressure P(t), whereas the conventional form uses the constant values T_{0} and P_{0} of the medium. This results in an extremely useful formulation of non-equilibrium thermodynamics so that the first law turns into the Gibbs fundamental relation and the Clausius inequality becomes an equality ointdQ(t)/T(t)equiv0 in all cases, a quite remarkable but unexpected result. We determine the irreversible components d_{i}Qequivd_{i}W and discuss how they can be determined to obtain the generalized dW(t) and dQ(t).
We review the use of an external auxiliary detector for measuring the full distribution of the work performed on or extracted from a quantum system during a unitary thermodynamic process. We first illustrate two paradigmatic schemes that allow one to measure the work distribution: a Ramsey technique to measure the characteristic function and a positive operator valued measure (POVM) scheme to directly measure the work probability distribution. Then, we show that these two ideas can be understood in a unified framework for assessing work fluctuations through a generic quantum detector and describe two protocols that are able to yield complementary information. This allows us also to highlight how quantum work is affected by the presence of coherences in the systems initial state. Finally, we describe physical implementations and experimental realisations of the first two schemes.
Dynamical quantum phase transitions (DQPTs) extend the concept of phase transitions and thus universality to the non-equilibrium regime. In this letter, we investigate DQPTs in a string of ions simulating interacting transverse-field Ising models. We observe non-equilibrium dynamics induced by a quantum quench and show for strings of up to 10 ions the direct detection of DQPTs by measuring a quantity that becomes non-analytic in time in the thermodynamic limit. Moreover, we provide a link between DQPTs and the dynamics of other relevant quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
Pulak Kumar Ghosh
,Deb Shankar Ray
.
(2012)
.
"Characterizing dynamical transitions in bistable system using non-equilibrium measurement of work"
.
Pulak Kumar Ghosh Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا