No Arabic abstract
Non-equilibrium aspects of the BCS model have fascinated physicists for decades, from the seminal works of Eliashberg to modern realizations in cold atom experiments. The latter scenarios have lead to a great deal of interest in the quench dynamics of fermions with pairing interactions. The recently introduced notion of a dynamical quantum phase transition is an attempt to classify the myriad of possible phenomena which can result in such far from equilibrium systems. These are defined as non-analytic points of the logarithm of the Loschmidt echo and are linked to oscillations in the dynamics a systems order parameter. In this work we analytically investigate the relation between DQPTs and oscillation of the superconducting order parameter in quenches of the BCS model. We find that each oscillation of the order parameter is accompanied by a DQPT which is first order in nature. We show this for a variety of initial states and furthermore find that when the order parameter attains a constant steady state then no DQPTS occur.
Based on tensor network simulations, we discuss the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice described by the extended Fermi-Hubbard model. Considering different initial states, namely noninteracting, metallic, insulating spin and charge density waves, we identify several types of sudden interaction quenches which lead to dynamical criticality. In different scenarios, clear connections between DQPTs and particular properties of the mean double occupation or charge imbalance can be established. Dynamical transitions resulting solely from high-frequency time-periodic modulation are also found, which are well described by a Floquet effective Hamiltonian. State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
We introduce a discrete-time quantum dynamics on a two-dimensional lattice that describes the evolution of a $1+1$-dimensional spin system. The underlying quantum map is constructed such that the reduced state at each time step is separable. We show that for long times this state becomes stationary and displays a continuous phase transition in the density of excited spins. This phenomenon can be understood through a connection to the so-called Domany-Kinzel automaton, which implements a classical non-equilibrium process that features a transition to an absorbing state. Near the transition density-density correlations become long-ranged, but interestingly the same is the case for quantum correlations despite the separability of the stationary state. We quantify quantum correlations through the local quantum uncertainty and show that in some cases they may be determined experimentally solely by measuring expectation values of classical observables. This work is inspired by recent experimental progress in the realization of Rydberg lattice quantum simulators, which - in a rather natural way - permit the realization of conditional quantum gates underlying the discrete-time dynamics discussed here.
Equilibrium and out-of-equilibrium transitions of an off-lattice protein model have been identified and studied. In particular, the out-of-equilibrium dynamics of the protein undergoing mechanical unfolding is investigated, and by using a work fluctuation relation, the system free energy landscape is evaluated. Three different structural transitions are identified along the unfolding pathways. Furthermore, the reconstruction of the the free and potential energy profiles in terms of inherent structure formalism allows us to put in direct correspondence these transitions with the equilibrium thermal transitions relevant for protein folding/unfolding. Through the study of the fluctuations of the protein structure at different temperatures, we identify the dynamical transitions, related to configurational rearrangements of the protein, which are precursors of the thermal transitions.
In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to characterize nonequilibrium states of quantum matter. DQPTs are marked by singular behavior in an textit{effective free energy} $lambda(t)$, which, however, is a global measure, making its experimental or theoretical detection challenging in general. We introduce two local measures for the detection of DQPTs with the advantage of requiring fewer resources than the full effective free energy. The first, called the textit{real-local} effective free energy $lambda_M(t)$, is defined in real space and is therefore suitable for systems where locally resolved measurements are directly accessible such as in quantum-simulator experiments involving Rydberg atoms or trapped ions. We test $lambda_M(t)$ in Ising chains with nearest-neighbor and power-law interactions, and find that this measure allows extraction of the universal critical behavior of DQPTs. The second measure we introduce is the textit{momentum-local} effective free energy $lambda_k(t)$, which is targeted at systems where momentum-resolved quantities are more naturally accessible, such as through time-of-flight measurements in ultracold atoms. We benchmark $lambda_k(t)$ for the Kitaev chain, a paradigmatic system for topological quantum matter, in the presence of weak interactions. Our introduced local measures for effective free energies can further facilitate the detection of DQPTs in modern quantum-simulator experiments.
Phase transitions have recently been formulated in the time domain of quantum many-body systems, a phenomenon dubbed dynamical quantum phase transitions (DQPTs), whose phenomenology is often divided in two types. One refers to distinct phases according to long-time averaged order parameters, while the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo. Here we show that such DQPTs can be found in systems with few degrees of freedom, i.e. they can take place without resorting to the traditional thermodynamic limit. We illustrate this by showing the existence of the two types of DQPTs in a quantum Rabi model -- a system involving a spin-$frac{1}{2}$ and a bosonic mode. The dynamical criticality appears in the limit of an infinitely large ratio of the spin frequency with respect to the bosonic one. We determine its dynamical phase diagram and study the long-time averaged order parameters, whose semiclassical approximation yields a jump at the transition point. We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio. Our results open the door for the study of DQPTs without the need to scale up the number of components, thus allowing for their investigation in well controllable systems.