Do you want to publish a course? Click here

Signature of Coherent Transport in Epitaxial Spinel-based Magnetic Tunnel Junctions Probed by Shot Noise Measurement

89   0   0.0 ( 0 )
 Added by Takahiro Tanaka
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measured the shot noise in fully epitaxial Fe/MgAl2OX/Fe-based magnetic tunneling junctions (MTJs). While the Fano factor to characterize the shot noise is very close to unity in the antiparallel configuration, it is reduced to 0.98 in the parallel configuration. This observation shows the sub-Poissonian process of electron tunneling in the parallel configuration, indicating the coherent tunneling through the spinel-based tunneling barrier of the MTJ.



rate research

Read More

We measured the shot noise in the CoFeB/MgO/CoFeB-based magnetic tunneling junctions with a high tunneling magnetoresistance ratio (over 200% at 3 K). Although the Fano factor in the anti-parallel configuration is close to unity, it is observed to be typically 0.91pm0.01 in the parallel configuration. It indicates the sub-Poissonian process of the electron tunneling in the parallel configuration due to the relevance of the spin-dependent coherent transport in the low bias regime.
Epitaxial Fe/magnesium gallium spinel oxide (MgGa2O4)/Fe(001) magnetic tunnel junctions (MTJs) were fabricated by magnetron sputtering. Tunnel magnetoresistance (TMR) ratio up to 121% at room temperature (196% at 4 K) was observed, suggesting a TMR enhancement by the coherent tunneling effect in the MgGa2O4 barrier. The MgGa2O4 layer had a spinel structure and it showed good lattice matching with the Fe layers owing to slight tetragonal lattice distortion of MgGa2O4. Barrier thickness dependence of the tunneling resistance and current-voltage characteristics revealed that the barrier height of the MgGa2O4 barrier is much lower than that in an MgAl2O4 barrier. This study demonstrates the potential of Ga-based spinel oxides for MTJ barriers having a large TMR ratio at a low resistance area product.
135 - J. Peralta-Ramos , , A. M. Llois 2008
We calculate the conductance through double junctions of the type M(inf.)-Sn-Mm-Sn-M(inf.) and triple junctions of the type M(inf.)-Sn-Mm-Sn-Mm-Sn-M(inf.), where M(inf.) are semi-infinite metallic electrodes, Sn are n layers of semiconductor and Mm are m layers of metal (the same as the electrodes), and compare the results with the conductance through simple junctions of the type M(inf.)-Sn-M(inf.). The junctions are bi-dimensional and their parts (electrodes and active region) are periodic in the direction perpendicular to the transport direction. To calculate the conductance we use the Greens Functions Landauer-B$ddot{u}$ttiker formalism. The electronic structure of the junction is modeled by a tight binding Hamiltonian. For a simple junction we find that the conductance decays exponentially with semiconductor thickness. For double and triple junctions, the conductance oscillates with the metal in-between thickness, and presents peaks for which the conductance is enhanced by 1-4 orders of magnitude. We find that when there is a conductance peak, the conductance is higher to that corresponding to a simple junction. The maximum ratio between the conductance of a double junction and the conductance of a simple junction is 146 %, while for a triple junction it is 323 %. These oscillations in the conductance are explained in terms of the energy spectrum of the junctions active region.
Experiments have shown that the tunneling current in a Co/Al$_2$O$_3$ magnetic tunneling junction (MTJ) is positively spin polarized, opposite to what is intuitively expected from standard tunneling theory which gives the spin polarization as exclusively dependent on the density of states (DOS) at $E_F$ of the Co layers. Here we report theoretical results that give a positive tunneling spin polarization and tunneling magnetoresistance (TMR) that is in good agreement with experiments. From density functional theory (DFT) calculations, an Al-rich interface MTJ with atomic-level disorder is shown to have a positively polarized DOS near the interface. We also provide an atomic model calculation which gives insights into the source of the positive polarization. A layer and spin dependent effective mass model, using values extracted from the DFT results, is then used to calculate the tunneling current, which shows positive spin polarization. Finally, we calculate the TMR from the tunneling spin polarization which shows good agreement with experiments.
136 - Jer^ome Rech 2010
We study the back-action of a nearby measurement device on electrons undergoing coherent transfer via adiabatic passage (CTAP) in a triple-well system. The measurement is provided by a quantum point contact capacitively coupled to the middle well, thus acting as a detector sensitive to the charge configuration of the triple-well system. We account for this continuous measurement by treating the whole {triple-well + detector} as a closed quantum system. This leads to a set of coupled differential equations for the density matrix of the enlarged system which we solve numerically. This approach allows to study a single realization of the measurement process while keeping track of the detector output, which is especially relevant for experiments. In particular, we find the emergence of a new peak in the distribution of electrons that passed through the point contact. As one increases the coupling between the middle potential well and the detector, this feature becomes more prominent and is accompanied by a substantial drop in the fidelity of the CTAP scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا