No Arabic abstract
After a short recall of our previous standing wave approach to the Casimir force problem, we consider Lifshitzs temperature Greens function method and its virtues from a physical point of view. Using his formula, specialized for perfectly reflecting mirrors, we present a quantitative discussion of the temperature effect on the attractive force.
We derive the Casimir force expression from Maxwells stress tensor by means of original quantum-electro-dynamical cavity modes. In contrast with similar calculations, our method is straightforward and does not rely on intricate mathematical extrapolation relations.
Hard momentum cutoff is used for estimating IR/UV corrections to the Casimir force. In contrast to the power-law corrections arising from the IR cutoff, one will find the UV cutoff-dependent corrections to be exponentially suppressed. As a consequence of this fact, there is no chance to detect the corrections due to UV cutoff arising for instance from the minimum-length scenarios even if fundamental quantum-gravity scale is taken around $sim$ TeV (as is the case, for example, in various models with extra dimensions).
Casimir force encodes the structure of the field modes as vacuum fluctuations and so it is sensitive to the extra dimensions of brane worlds. Now, in flat spacetimes of arbitrary dimension the two standard approaches to the Casimir force, Greens function and zeta function, yield the same result, but for brane world models this was only assumed. In this work we show both approaches yield the same Casimir force in the case of Universal Extra Dimensions and Randall-Sundrum scenarios with one and two branes added by p compact dimensions. Essentially, the details of the mode eigenfunctions that enter the Casimir force in the Greens function approach get removed due to their orthogonality relations with a measure involving the right hyper-volume of the plates and this leaves just the contribution coming from the Zeta function approach. The present analysis corrects previous results showing a difference between the two approaches for the single brane Randall-Sundrum; this was due to an erroneous hyper-volume of the plates introduced by the authors when using the Greens function. For all the models we discuss here, the resulting Casimir force can be neatly expressed in terms of two four dimensional Casimir force contributions: one for the massless mode and the other for a tower of massive modes associated with the extra dimensions.
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Greens function formalism. In addition we present an extension so as to include effects of the two-particle propagator. Our procedure is demonstrated for a dithiolbenzene molecule between silver electrodes. The full current-voltage characteristic is calculated. Specific conclusions for the contribution of correlation and two-particle effects are derived. The latter are found to contribute about 5% to the current. The order of magnitude of the current coincides with experiments.
We present an ab initio theory of core- and valence resonant inelastic x-ray scattering (RIXS) based on a real-space multiple scattering Greens function formalism and a quasi-boson model Hamiltonian. Simplifying assumptions are made which lead to an approximation of the RIXS spectrum in terms of a convolution of an effective x-ray absorption signal with the x-ray emission signal. Additional many body corrections are incorporated in terms of an effective energy dependent spectral function. Example calculations of RIXS are found to give qualitative agreement with experimental data. Our approach also yields simulations of lifetime-broadening suppressed XAS, as observed in high energy resolutionfluorescence detection experiment (HERFD). Finally possible improvements to our approach are briefly discussed.