Do you want to publish a course? Click here

Real Space Greens Function Approach to RIXS

148   0   0.0 ( 0 )
 Added by John J. Rehr
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an ab initio theory of core- and valence resonant inelastic x-ray scattering (RIXS) based on a real-space multiple scattering Greens function formalism and a quasi-boson model Hamiltonian. Simplifying assumptions are made which lead to an approximation of the RIXS spectrum in terms of a convolution of an effective x-ray absorption signal with the x-ray emission signal. Additional many body corrections are incorporated in terms of an effective energy dependent spectral function. Example calculations of RIXS are found to give qualitative agreement with experimental data. Our approach also yields simulations of lifetime-broadening suppressed XAS, as observed in high energy resolutionfluorescence detection experiment (HERFD). Finally possible improvements to our approach are briefly discussed.



rate research

Read More

284 - Tun S. Tan , J. J. Kas , 2021
There has been considerable interest in properties of condensed matter at finite temperature, including non-equilibrium behavior and extreme conditions up to the warm dense matter regime. Such behavior is encountered, e.g., in experimental time resolved x-ray absorption spectroscopy (XAS) in the presence of intense laser fields. In an effort to simulate such behavior, we present an approach for calculations of finite-temperature x-ray absorption spectra in arbitrary materials, using a generalization of the real-space Greens function formalism. The method is incorporated as an option in the core-level x-ray spectroscopy code FEFF10. To illustrate the approach, we present calculations for several materials together with comparisons to experiment and with other methods.
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Greens function formalism. In addition we present an extension so as to include effects of the two-particle propagator. Our procedure is demonstrated for a dithiolbenzene molecule between silver electrodes. The full current-voltage characteristic is calculated. Specific conclusions for the contribution of correlation and two-particle effects are derived. The latter are found to contribute about 5% to the current. The order of magnitude of the current coincides with experiments.
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based full ab initio description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Greens function formalism. Our procedure is demonstrated for a dithiolethine molecule between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.
A first principles approach, based on the real space multiple scattering Greens function method, is presented for spin- and angle-resolved resonant photoemission from magnetic surfaces. It is applied to the Fe(010) valence band photoemission excited with circularly polarized X-rays around the Fe L3 absorption edge. When the photon energy is swept through the Fe 2p-3d resonance, the valence band spectra are strongly modified in terms of absolute and relative peak intensities, degree of spin-polarization and light polarization dependence. New peaks in the spin-polarized spectra are identified as spin-flip transitions induced by exchange decay of spin-mixed core-holes. By comparison with single atom and band structure data, it is shown that both intra-atomic and multiple scattering effects strongly influence the spectra. We show how the different features linked to states of different orbital symmetry in the d band are differently enhanced by the resonant effect. The appearance and origin of circular dichroism and spin polarization are analyzed for different geometries of light incidence and electron emission direction, providing guidelines for future experiments.
We present a Greens function approach to calculate the Dzyaloshinskii-Moriya interactions (DMI) from first principles electronic structure calculations, that is computationally more efficient and accurate than the most-commonly employed supercell and generalized Bloch-based approaches. The method is applied to the (111) Co/Pt bilayer where the Co- and/or Pt-thickness dependence of the DMI coefficients are calculated. Overall, the calculated DMI are in relatively good agreement with the corresponding values reported experimentally. Furthermore, we investigate the effect of strain in the DMI tensor elements and show that the isotropic N{e}el DMI can be significantly modulated by the normal strains, $epsilon_{xx},epsilon_{yy}$ and is relatively insensitive to the shear strain, $epsilon_{xy}$. Moreover, we show that anisotropic strains, $(epsilon_{xx}-epsilon_{yy})$ and $epsilon_{xy}$, result in the emergence of anisotropic N{e}el- and Bloch-type DMIs, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا