Do you want to publish a course? Click here

MOA-2010-BLG-477Lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion and detection of blended light

248   0   0.0 ( 0 )
 Added by Cheongho Han
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA-2010-BLG-477. The measured planet-star mass ratio is $q=(2.181pm0.004)times 10^{-3}$ and the projected separation is $s=1.1228pm0.0006$ in units of the Einstein radius. The angular Einstein radius is unusually large $theta_{rm E}=1.38pm 0.11$ mas. Combining this measurement with constraints on the microlens parallax and the lens flux, we can only limit the host mass to the range $0.13<M/M_odot<1.0$. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of $M_*=0.67^{+0.33}_{-0.13} M_odot$ and $m_p=1.5^{+0.8}_{-0.3} M_{rm JUP}$ at a distance of $D=2.3pm0.6$ kpc, and with a semi-major axis of $a=2^{+3}_{-1}$ AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.



rate research

Read More

We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baades Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the microlens parallax effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the inclusion of undetected parallax and orbital motion effects into the models, and their influence onto the final physical parameters estimates.
Global second-generation microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups, without prompting alerts that could have led to dedicated follow-up observations. Fitting a microlensing model to the data, we find that the timescale of the event was t_E=23.2 +/-0.8 days, and the mass ratio between the lens star and its companion is q=0.028 +/-0.001. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that incorporates a Galactic structure model, we estimate the mass of the lens at 0.39 +0.45/-0.19 M_sun, at a distance of 7.56 +/-0.91 kpc. Thus, the companion is likely a planet of mass 11.6 +13.4/-5.6 M_J, at a projected separation of 4.3 +1.5/-1.2 AU, rather far beyond the snow line. This is the first pure-survey planet reported from a second-generation microlensing survey, and shows that survey data alone can be sufficient to characterize a planetary model. With the detection of additional survey-only planets, we will be able to constrain the frequency of extrasolar planets near their systems snow lines.
Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is s=0.548+/- 0.005 Einstein radii. However, due to the s-->s^{-1} degeneracy, projected separations of s^{-1} are only marginally disfavored at Delta chi^2=3. A Bayesian estimate of the host mass gives M_L = 0.43^{+0.27}_{-0.17} M_Sun, with a sharp upper limit of M_L < 1.2 M_Sun from upper limits on the lens flux. Hence, the planet mass is m_p=2.4^{+1.5}_{-0.9} M_Jup, and the physical projected separation is either r_perp = ~1.0 AU or r_perp = ~3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the Delta chi^2 is much smaller (Delta chi^2~500) than with the followup data. The Delta chi^2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.
302 - Subo Dong , I.A. Bond , A. Gould 2008
We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A_max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus the deviation from a single-lens fit is broad and relatively weak (~ few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of q = 0.0026+/-0.0004, in accord with the large significance (Deltachi^2=1070) of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M_Sun (assuming it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M_Sun and thus a planet mass of ~ 0.5-1.3 M_Jupiter. The separation and equilibrium temperature are ~0.6-1.1AU (~5.3-9.7AU) and ~103K (~34K) for the close (wide) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.
We present the analysis of the binary gravitational microlensing event MOA-2015-BLG-020. The event has a fairly long timescale (about 63 days) and thus the light curve deviates significantly from the lensing model that is based on the rectilinear lens-source relative motion. This enables us to measure the microlensing parallax through the annual parallax effect. The microlensing parallax parameters constrained by the ground-based data are confirmed by the Spitzer observations through the satellite parallax method. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined. It is found that the binary lens is composed of two dwarf stars with masses $M_1 = 0.606 pm 0.028M_odot$ and $M_2 = 0.125 pm 0.006M_odot$ in the Galactic disk. Assuming the source star is at the same distance as the bulge red clump stars, we find the lens is at a distance $D_L = 2.44 pm 0.10 kpc$. In the end, we provide a summary and short discussion of all published microlensing events in which the annual parallax effect is confirmed by other independent observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا