Do you want to publish a course? Click here

Heralded processes on continuous-variable spaces as quantum maps

278   0   0.0 ( 0 )
 Added by Franck Ferreyrol
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Conditional evolution is crucial for generating non-Gaussian resources for quantum information tasks in the continuous variable scenario. However, tools are lacking for a convenient representation of heralded process in terms of quantum maps for continuous variable states, in the same way as Wigner functions are able to give a compact description of the quantum state. Here we propose and study such a representation, based on the introduction of a suitable transfer function to describe the action of a quantum operation on the Wigner function. We also reconstruct the maps of two relevant examples of conditional process, that is, noiseless amplification and photon addition, by combining experimental data and a detailed physical model. This analysis allows to fully characterize the effect of experimental imperfections in their implementations.



rate research

Read More

60 - Masashi Ban 2002
A quantum channel is derived for continuous variable teleportation which is performed by means of an arbitrary entangled state and the standard protocol. When a Gaussian entangled state such as a two-mode squeezed-vacuum state is used, the continuous variable teleportation is equivalent to the thermalizing quantum channel. Continuous variable dense coding is also considered. Both the continuous variable teleportation and the continuous variable dense coding are characterized by the same function determined by the entangled state and the quantum measurement.
With the rise of quantum technologies, it is necessary to have practical and preferably non-destructive methods to measure and read-out from such devices. A current line of research towards this has focussed on the use of ancilla systems which couple to the system under investigation, and through their interaction, enable properties of the primary system to be imprinted onto and inferred from the ancillae. We propose the use of continuous variable qumodes as ancillary probes, and show that the interaction Hamiltonian can be fully characterised and directly sampled from measurements of the qumode alone. We suggest how such probes may also be used to determine thermodynamical properties, including reconstruction of the partition function. We show that the method is robust to realistic experimental imperfections such as finite-sized measurement bins and squeezing, and discuss how such probes are already feasible with current experimental setups.
242 - Mark Adcock , Peter Hoyer , 2008
We establish a framework for oracle identification problems in the continuous variable setting, where the stated problem necessarily is the same as in the discrete variable case, and continuous variables are manifested through a continuous representation in an infinite-dimensional Hilbert space. We apply this formalism to the Deutsch-Jozsa problem and show that, due to an uncertainty relation between the continuous representation and its Fourier-transform dual representation, the corresponding Deutsch-Jozsa algorithm is probabilistic hence forbids an exponential speed-up, contrary to a previous claim in the literature.
Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have been proposed for discrete-variable (DV) single-photon-based quantum communications. Continuous variable (CV) encodings over the quadrature degrees of freedom of the electromagnetic field mode offer an attractive alternative. For example, CV transmission systems are easier to integrate with existing optical telecom systems compared to their DV counterparts. Yet, repeaters for CV have remained elusive. We present a novel quantum repeater scheme for CV entanglement distribution over a lossy bosonic channel that beats the direct transmission exponential rate-loss tradeoff. The scheme involves repeater nodes consisting of a) two-mode squeezed vacuum (TMSV) CV entanglement sources, b) the quantum scissors operation to perform nondeterministic noiseless linear amplification of lossy TMSV states, c) a layer of switched, mode multiplexing inspired by second-generation DV repeaters, which is the key ingredient apart from probabilistic entanglement purification that makes DV repeaters work, and d) a non-Gaussian entanglement swap operation. We report our exact results on the rate-loss envelope achieved by the scheme.
Simulation of a quantum many-body system at finite temperatures is crucially important but quite challenging. Here we present an experimentally feasible quantum algorithm assisted with continuous-variable for simulating quantum systems at finite temperatures. Our algorithm has a time complexity scaling polynomially with the inverse temperature and the desired accuracy. We demonstrate the quantum algorithm by simulating finite temperature phase diagram of the Kitaev model. It is found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a quantum computer with only a few qubits and thus the algorithm may be readily implemented on current quantum processors. We further propose a protocol implementable with superconducting or trapped ion quantum computers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا