No Arabic abstract
Traditionally, scholarly impact and visibility have been measured by counting publications and citations in the scholarly literature. However, increasingly scholars are also visible on the Web, establishing presences in a growing variety of social ecosystems. But how wide and established is this presence, and how do measures of social Web impact relate to their more traditional counterparts? To answer this, we sampled 57 presenters from the 2010 Leiden STI Conference, gathering publication and citations counts as well as data from the presenters Web footprints. We found Web presence widespread and diverse: 84% of scholars had homepages, 70% were on LinkedIn, 23% had public Google Scholar profiles, and 16% were on Twitter. For sampled scholars publications, social reference manager bookmarks were compared to Scopus and Web of Science citations; we found that Mendeley covers more than 80% of sampled articles, and that Mendeley bookmarks are significantly correlated (r=.45) to Scopus citation counts.
Citation prediction of scholarly papers is of great significance in guiding funding allocations, recruitment decisions, and rewards. However, little is known about how citation patterns evolve over time. By exploring the inherent involution property in scholarly paper citation, we introduce the Paper Potential Index (PPI) model based on four factors: inherent quality of scholarly paper, scholarly paper impact decaying over time, early citations, and early citers impact. In addition, by analyzing factors that drive citation growth, we propose a multi-feature model for impact prediction. Experimental results demonstrate that the two models improve the accuracy in predicting scholarly paper citations. Compared to the multi-feature model, the PPI model yields superior predictive performance in terms of range-normalized RMSE. The PPI model better interprets the changes in citation, without the need to adjust parameters. Compared to the PPI model, the multi-feature model performs better prediction in terms of Mean Absolute Percentage Error and Accuracy; however, their predictive performance is more dependent on the parameter adjustment.
Scholarly resources, just like any other resources on the web, are subject to reference rot as they frequently disappear or significantly change over time. Digital Object Identifiers (DOIs) are commonplace to persistently identify scholarly resources and have become the de facto standard for citing them. We investigate the notion of persistence of DOIs by analyzing their resolution on the web. We derive confidence in the persistence of these identifiers in part from the assumption that dereferencing a DOI will consistently return the same response, regardless of which HTTP request method we use or from which network environment we send the requests. Our experiments show, however, that persistence, according to our interpretation, is not warranted. We find that scholarly content providers respond differently to varying request methods and network environments and even change their response to requests against the same DOI. In this paper we present the results of our quantitative analysis that is aimed at informing the scholarly communication community about this disconcerting lack of consistency.
This paper maps the national UK web presence on the basis of an analysis of the .uk domain from 1996 to 2010. It reviews previous attempts to use web archives to understand national web domains and describes the dataset. Next, it presents an analysis of the .uk domain, including the overall number of links in the archive and changes in the link density of different second-level domains over time. We then explore changes over time within a particular second-level domain, the academic subdomain .ac.uk, and compare linking practices with variables, including institutional affiliation, league table ranking, and geographic location. We do not detect institutional affiliation affecting linking practices and find only partial evidence of league table ranking affecting network centrality, but find a clear inverse relationship between the density of links and the geographical distance between universities. This echoes prior findings regarding offline academic activity, which allows us to argue that real-world factors like geography continue to shape academic relationships even in the Internet age. We conclude with directions for future uses of web archive resources in this emerging area of research.
To quantify the mechanism of a complex network growth we focus on the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on copying/redirection/triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such verification is performed by measuring citation dynamics of Physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including non-stationary citation distributions, diverging citation trajectory of similar papers, runaways or immortal papers with infinite citation lifetime etc. Thus, our most important finding is nonlinearity in complex network growth. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
Academic papers have been the protagonists in disseminating expertise. Naturally, paper citation pattern analysis is an efficient and essential way of investigating the knowledge structure of science and technology. For decades, it has been observed that citation of scientific literature follows a heterogeneous and heavy-tailed distribution, and many of them suggest a power-law distribution, log-normal distribution, and related distributions. However, many studies are limited to small-scale approaches; therefore, it is hard to generalize. To overcome this problem, we investigate 21 years of citation evolution through a systematic analysis of the entire citation history of 42,423,644 scientific literatures published from 1996 to 2016 and contained in SCOPUS. We tested six candidate distributions for the scientific literature in three distinct levels of Scimago Journal & Country Rank (SJR) classification scheme. First, we observe that the raw number of annual citation acquisitions tends to follow the log-normal distribution for all disciplines, except for the first year of the publication. We also find significant disparity between the yearly acquired citation number among the journals, which suggests that it is essential to remove the citation surplus inherited from the prestige of the journals. Our simple method for separating the citation preference of an individual article from the inherited citation of the journals reveals an unexpected regularity in the normalized annual acquisitions of citations across the entire field of science. Specifically, the normalized annual citation acquisitions have power-law probability distributions with an exponential cut-off of the exponents around 2.3, regardless of its publication and citation year. Our results imply that journal reputation has a substantial long-term impact on the citation.