Do you want to publish a course? Click here

Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets

140   0   0.0 ( 0 )
 Added by Marc Janoschek
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two centuries of research on phase transitions have repeatedly highlighted the importance of critical fluctuations that abound in the vicinity of a critical point. They are at the origin of scaling laws obeyed by thermodynamic observables close to second-order phase transitions resulting in the concept of universality classes, that is of paramount importance for the study of organizational principles of matter. Strikingly, in case such soft fluctuations are too abundant they may alter the nature of the phase transition profoundly; the system might evade the critical state altogether by undergoing a discontinuous first-order transition into the ordered phase. Fluctuation-induced first-order transitions have been discussed broadly and are germane for superconductors, liquid crystals, or phase transitions in the early universe, but clear experimental confirmations remain scarce. Our results from neutron scattering and thermodynamics on the model Dzyaloshinskii-Moriya (DM) helimagnet (HM) MnSi show that such a fluctuation-induced first-order transition is realized between its paramagnetic and HM state with remarkable agreement between experiment and a theory put forward by Brazovskii. While our study clarifies the nature of the HM phase transition in MnSi that has puzzled scientists for several decades, more importantly, our conclusions entirely based on symmetry arguments are also relevant for other DM-HMs with only weak cubic magnetic anisotropies. This is in particular noteworthy in light of a wide range of recent discoveries that show that DM helimagnetism is at the heart of problems such as topological magnetic order, multiferroics, and spintronics.



rate research

Read More

Taking the pseudobinary C15-Laves phase compound Ce(Fe$_{0.96}$Al$_{0.04}$)$_2$ as a paradigm for studying a ferromagnetic(FM) to antiferromagnetic(AFM) phase transition, we present interesting thermomagnetic history effects in magnetotransport measurements across this FM-AFM transition. We argue that these distinctive hysteretic features can be used to identify the exact nature -first order or second order - of this kind of transition in magnetic systems where electrical transport is strongly correlated with the underlying magnetic order. A comparison is made with the similar FM-AFM transitions observed in Nd and Pr-based manganese compounds with perovskite-type structure.
193 - A.S. Moskvin 2019
We present an overview of the microscopic theory of the Dzyaloshinskii-Moriya (DM) coupling in strongly correlated 3d compounds. Most attention in the paper centers around the derivation of the Dzyaloshinskii vector, its value, orientation, and sense (sign) under different types of the (super)exchange interaction and crystal field. We consider both the Moriya mechanism of the antisymmetric interaction and novel contributions, in particular, that of spin-orbital coupling on the intermediate ligand ions. We have predicted a novel magnetic phenomenon, {it weak ferrimagnetism} in mixed weak ferromagnets with competing signs of the Dzyaloshinskii vectors. We revisit a problem of the DM coupling for a single bond in cuprates specifying the local spin-orbital contributions to Dzyaloshinskii vector focusing on the oxygen term. We predict a novel puzzling effect of the on-site staggered spin polarization to be a result of the on-site spin-orbital coupling and the the cation-ligand spin density transfer. The intermediate ligand NMR measurements are shown to be an effective tool to inspect the effects of the DM coupling in an external magnetic field. We predict the effect of a $strong$ oxygen weak antiferromagnetism in edge-shared CuO$_2$ chains due to uncompensated oxygen Dzyaloshinskii vectors. We revisit the effects of symmetric spin anisotropy directly induced by the DM coupling. A critical analysis will be given of different approaches to exchange-relativistic coupling based on the cluster and the DFT based calculations. Theoretical results are applied to different classes of 3d compounds from conventional weak ferromagnets ($alpha$-Fe$_2$O$_3$, FeBO$_3$, FeF$_3$, RFeO$_3$, RCrO$_3$,.. ) to unconventional systems such as weak ferrimagnets (e.g., RFe$_{1-x}$Cr$_x$O$_3$), helimagnets (e.g., CsCuCl$_3$), and parent cuprates (La$_2$CuO$_4$,...).
The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model on the kagome lattice with non-negligible Dzyaloshinskii-Moriya interaction~(DMI). A well established phase transition to the $mathbf q=0$ long-range order occurs in this model when the DMI strength increases, but the precise nature of a small-DMI phase remains controversial. Here, we describe a new phase obtained from Schwinger-boson mean-field theory that is stable at small DMI, and which can explain the dispersionless spectrum seen in inelastic neutron scattering experiment by Han et al (Nature (London) 492, 406 (2012)}). It is a time-reversal symmetry breaking $mathbb Z_2$ spin liquid, with the unique property of a small and constant spin gap in an extended region of the Brillouin zone. The phase diagram as a function of DMI and spin size is given, and dynamical spin structure factors are presented.
In this report we show that in the perovskite manganite La_{1-x}Ca_{x}MnO_3 for a fixed x approx 0.33, the magnetic transition changes over from first order to second order on reducing the particle size to nearly few tens of a nanometer. The change-over is brought about only by reducing the size and with no change in the stoichiometry. The size reduction to an average size of about 15 nm retains the ferromagnetic state albeit with somewhat smaller saturation magnetization and the ferromagnetic transition temperature T_{C} is suppressed by a small amount (4%). The magnetization of the nanoparticles near T_{C} follow the scaling equation $M/|epsilon|^beta = f_pm(H/|epsilon|^{gamma+beta})$, where, $epsilon = |T-T_C|/T_C$. The critical exponents, associated with the transition have been obtained from modified Arrott plots and they are found to be $beta=0.47pm 0.01$ and $gamma=1.06pm 0.03$. From a plot of M vs H at T_{C} we find the exponent $delta=3.10 pm 0.13$. All the exponents are close to the mean field values. The change-over of the order of the transition has been attributed to a lowering of the value of the derivative dT_{C}/dP due to an increased pressure in the nanoparticles arising due to size reduction. This effect acts in tandem with the rounding off effect due to random strain in the nanoparticles.
354 - Benjamin Canals 2008
It is shown that the mechanism of order out of disorder is at work in the antisymmetric pyrochlore antiferromagnet. Quantum as well as thermal fluctuations break the continuous degeneracy of the classical ground state manifold and reduce its symmetry to $mathbb{Z}_3 times mathbb{Z}_2$. The role of anisotropic symmetric exchange is also investigated and we conclude that this discrete like ordering is robust with respect to these second order like interactions. The antisymmetric pyrochlore antiferromagnet is therefore expected to order at low temperatures, whatever the symmetry type of its interactions, in both the classical and semi classical limits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا