No Arabic abstract
The equivalence principle was formulated by Einstein in an attempt to extend the concept of inertial frames to accelerated frames, thereby bringing in gravity. In recent decades, it has been realised that gravity is linked not only with geometry of space-time but also with thermodynamics especially in connection with black hole horizons, vacuum fluctuations, dark energy, etc. In this work we look at how the equivalence principle manifests itself in these different situations where we have strong gravitational fields. In recent years the generalised uncertainty principle has been invoked to connect gravity and curvature with quantum physics and now we may also need an extended equivalence principle to connect quantum theory with gravity.
Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We show that if such screening occurrs via the chameleon mechanism such as in f(R), it is possible to have order one violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge for large objects but not for small ones (large/small is defined by the gravitational potential and controlled by the scalar coupling). This leads to order one fluctuations in the inertial to gravitational mass ratio. In Jordan frame, it is no longer true that all objects move on geodesics. In contrast, if the scalar screening occurrs via strong coupling, such as in the DGP braneworld model, equivalence principle violation occurrs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should fall faster than large galaxies, even when dynamical friction is negligible; 2. voids defined by small galaxies would be larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where mass estimate from HI rotational velocity could exceed that from stars by 30 % or more. To avoid blanket screening of all objects, the most promising place to look is in voids.
According to this principle, the relativistic changes occurring to the bodies, after velocity changes, cannot be detected by observers moving with them because bodies and stationary radiations change in identical proportion after identical circumstances, i.e, because bodies and stationary radiations have identical relativistic laws with respect to any fixed observer. Effectively the theoretical properties of particle models made up of stationary radiations agree with special relativity, quantum mechanics and the gravitational (G) tests. They fix lineal properties for all of them: the G fields, the black holes (BHs) and the universe. The BHs, after absorbing radiation, must return to the gas state. An eventual universe expansion cannot change any relative distance because the G expansion of matter occurs in identical proportion. This fixes a new kind of universe. In it matter evolves in closed cycles, between gas and BH states and vice versa, indefinitely. Galaxies and clusters must evolve rather cyclically between luminous and black states. Most of the G potential energy of a matter cycle must be released around neutron star and black hole boundaries. Nuclear stripping reactions would transform G energy into nuclear and kinetic energies. This accounts for many non well explained phenomena in astrophysics. This work has been published, in more detail, in a book.
In this work we consider some consequences of the Bohr-Sommerfeld-Hansson (Old or quasi-classical) quantum theory of the Newtonian gravity, i.e. of the gravitational atom. We prove that in this case (for gravitational central force and quantized angular momentum) centrifugal acceleration becomes formally-theoretically dependent (proportional to fourth degree) of the mass of gravitational electron rotating around gravitational nucleus for any quantum number (state). It seemingly leads toward a paradoxical breaking of the relativistic equivalence principle which contradicts to real experimental data. We demonstrate that this equivalence principle breaking does not really appear in the (quasi classical) quantum theory, but that it necessary appears only in a hypothetical extension of the quantum theory that needs a classical like interpretation of the Bohr-Sommerfeld angular momentum quantization postulate. It is, in some sense, similar to Bell-Aspect analysis that points out that a hypothetical deterministic extension of the quantum mechanics, in distinction to usual quantum mechanics, can reproduce experimental data if and only if it is non-local (superluminal) in contradiction with relativistic locality (luminality) principle.
We describe a geometric and symmetry-based formulation of the equivalence principle in non-relativistic physics. It applies both on the classical and quantum levels and states that the Newtonian potential can be eliminated in favor of a curved and time-dependent spatial metric. It is this requirement that forces the gravitational mass to be equal to the inertial mass. We identify the symmetry responsible for the equivalence principle as the remnant of time-reparameterization symmetry of the relativistic theory. We also clarify the transformation properties of the Schroedinger wave-function under arbitrary changes of frame.
General Relativity is today the best theory of gravity addressing a wide range of phenomena. Our understanding of physical laws, from cosmology to local scales, cannot be properly formulated without taking into account it. It is based on one of the most fundamental principles of Nature, the Equivalence Principle, which represents the core of the Einstein theory of gravity. The confirmation of its validity at different scales and in different contexts represents one of the main challenges of modern physics both from the theoretical and the experimental points of view. A major issue related to this principle is the fact that we actually do not know if it is valid at quantum level. Furthermore, recent progress on relativistic theories of gravity have to take into account new issues like Dark Matter and Dark Energy, as well as the validity of fundamental principles like local Lorentz and position invariance. Experiments allow to set stringent constraints on well established symmetry laws, on the physics beyond the Standard Model of particles and interactions, and on General Relativity and its possible extensions. In this review, we discuss precision tests of gravity in General Relativity and alternative theories and their relation with the Equivalence Principle. In the first part, we discuss the Einstein Equivalence Principle according to its weak and strong formulation. We recall some basic topics of General Relativity and the necessity of its extension. Some models of modified gravity are presented in some details. The second part of the paper is devoted to the experimental tests of the Equivalence Principle in its weak formulation. We present the results and methods used in high-precision experiments, and discuss the potential and prospects for future experimental tests.