We propose and document the evidence for an analogy between the dynamics of granular counter-flows in the presence of bottlenecks or restrictions and financial price formation processes. Using extensive simulations, we find that the counter-flows of simulated pedestrians through a door display many stylized facts observed in financial markets when the density around the door is compared with the logarithm of the price. The stylized properties are present already when the agents in the pedestrian model are assumed to display a zero-intelligent behavior. If agents are given decision-making capacity and adapt to partially follow the majority, periods of herding behavior may additionally occur. This generates the very slow decay of the autocorrelation of absolute return due to an intermittent dynamics. Our finding suggest that the stylized facts in the fluctuations of the financial prices result from a competition of two groups with opposite interests in the presence of a constraint funneling the flow of transactions to a narrow band of prices.
We investigate the large-volatility dynamics in financial markets, based on the minute-to-minute and daily data of the Chinese Indices and German DAX. The dynamic relaxation both before and after large volatilities is characterized by a power law, and the exponents $p_pm$ usually vary with the strength of the large volatilities. The large-volatility dynamics is time-reversal symmetric at the time scale in minutes, while asymmetric at the daily time scale. Careful analysis reveals that the time-reversal asymmetry is mainly induced by exogenous events. It is also the exogenous events which drive the financial dynamics to a non-stationary state. Different characteristics of the Chinese and German stock markets are uncovered.
Based on the daily data of American and Chinese stock markets, the dynamic behavior of a financial network with static and dynamic thresholds is investigated. Compared with the static threshold, the dynamic threshold suppresses the large fluctuation induced by the cross-correlation of individual stock prices, and leads to a stable topological structure in the dynamic evolution. Long-range time-correlations are revealed for the average clustering coefficient, average degree and cross-correlation of degrees. The dynamic network shows a two-peak behavior in the degree distribution.
The investor is interested in the expected return and he is also concerned about the risk and the uncertainty assumed by the investment. One of the most popular concepts used to measure the risk and the uncertainty is the variance and/or the standard-deviation. In this paper we explore the following issues: Is the standard-deviation a good measure of risk and uncertainty? What are the potentialities of the entropy in this context? Can entropy present some advantages as a measure of uncertainty and simultaneously verify some basic assumptions of the portfolio management theory, namely the effect of diversification?
This study investigates empirically whether the degree of stock market efficiency is related to the prediction power of future price change using the indices of twenty seven stock markets. Efficiency refers to weak-form efficient market hypothesis (EMH) in terms of the information of past price changes. The prediction power corresponds to the hit-rate, which is the rate of the consistency between the direction of actual price change and that of predicted one, calculated by the nearest neighbor prediction method (NN method) using the out-of-sample. In this manuscript, the Hurst exponent and the approximate entropy (ApEn) are used as the quantitative measurements of the degree of efficiency. The relationship between the Hurst exponent, reflecting the various time correlation property, and the ApEn value, reflecting the randomness in the time series, shows negative correlation. However, the average prediction power on the direction of future price change has the strongly positive correlation with the Hurst exponent, and the negative correlation with the ApEn. Therefore, the market index with less market efficiency has higher prediction power for future price change than one with higher market efficiency when we analyze the market using the past price change pattern. Furthermore, we show that the Hurst exponent, a measurement of the long-term memory property, provides more significant information in terms of prediction of future price changes than the ApEn and the NN method.
We introduce simplicial persistence, a measure of time evolution of network motifs in subsequent temporal layers. We observe long memory in the evolution of structures from correlation filtering, with a two regime power law decay in the number of persistent simplicial complexes. Null models of the underlying time series are tested to investigate properties of the generative process and its evolutional constraints. Networks are generated with both TMFG filtering technique and thresholding showing that embedding-based filtering methods (TMFG) are able to identify higher order structures throughout the market sample, where thresholding methods fail. The decay exponents of these long memory processes are used to characterise financial markets based on their stage of development and liquidity. We find that more liquid markets tend to have a slower persistence decay. This is in contrast with the common understanding that developed markets are more random. We find that they are indeed less predictable for what concerns the dynamics of each single variable but they are more predictable for what concerns the collective evolution of the variables. This could imply higher fragility to systemic shocks.
Daniel R. Parisi
,Didier Sornette
,Dirk Helbing
.
(2012)
.
"Universality class of balanced flows with bottlenecks: granular flows, pedestrian fluxes and financial price dynamics"
.
Daniel Parisi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا