No Arabic abstract
A generalized inverse seesaw model, in which the 9x9 neutrino mass matrix has vanishing (1,1) and (1,3) submatrices, is proposed. This is similar to the universal two-zero texture which gives vanishing (1,1) and (1,3) elements of the 3x3 mass matrices in both the charged lepton and neutrino sectors. We consider the Z_6 x Z_6 group to realize such texture zeros. We study this generalized inverse seesaw model systematically and derive the seesaw formula for the 3x3 mass matrix of three active neutrinos. We also analyze the universal two-zero texture in the general case and propose two ansatze to reduce the number of free parameters. Taking account of the new result of theta_{13} from the Daya Bay experiment, we constrain the parameter space of the universal two-zero texture in the general case and in the two ansatze, respectively. We find that one of the ansatze works well.
We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $approx$ 0.003 eV - $m_2$ $approx$ 0.012 eV - $m_3$ $approx$ 0.048 eV.
We discuss mass matrices with four texture zeros for the quarks and leptons. The three mixing angles for the quarks and leptons are functions of the fermion masses. The results agree with the experimental data. The ratio of the masses of the first two neutrinos is given by the solar mixing angle. The neutrino masses are calculated: $m_1$ $approx$ 0.004 eV, $m_2$ $approx$ 0.010 eV, $m_3$ $approx$ 0.070 eV.
In this paper, we present a systematic investigation on simple inverse seesaw models for neutrino masses and flavor mixing based on the modular $S^{}_4$ symmetry. Two right-handed neutrinos and three extra fermion singlets are introduced to account for light neutrino masses through the inverse seesaw mechanism, and to provide a keV-mass sterile neutrino as the candidate for warm dark matter in our Universe. Considering all possible modular forms with weights no larger than four, we obtain twelve models, among which we find one is in excellent agreement with the observed lepton mass spectra and flavor mixing. Moreover, we explore the allowed range of the sterile neutrino mass and mixing angles, by taking into account the direct search of $X$-ray line and the Lyman-$alpha$ observations. The model predictions for neutrino mixing parameters and the dark matter abundance will be readily testable in future neutrino oscillation experiments and cosmological observations.
We study a model for the mass matrices of the leptons. We are ablte to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mxiing angles and can predict the masses of the neutrinos. We find a normal hierarchy -the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and of the neutrinos. We find 38 degrees, consistent with the experiments. The mixing element, connecting the first neutrino with the electron, is found to be 0.05.
We discuss first the flavor mixing of the quarks, using the texture zero mass matrices. Then we study a similar model for the mass matrices of the leptons. We are able to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mixing angles and can predict the masses of the neutrinos. We find a normal hierarchy - the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and the neutrinos. we find about 40 degrees, consistent with the experiments. The mixing element, connecting the first neutrino wit the electron, is predicted to be 0.05. This prediction can soon be checked by the Daya Bay experiment.