No Arabic abstract
We have been monitoring yearly variation in the Suns polar magnetic fields with the Solar Optical Telescope aboard {it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude ($10^{15}$ -- $10^{20}$ Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches ($ geq 10^{18}$ Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches ($ < 10^{18}$ Mx) and that of the horizontal magnetic fields during the years 2008--2012.
The Suns polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There was a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in the rest of cases. Epochs of the polarity reversal from measurements of the Wilcox Solar Observatory (WSO) are compared with ones when the reversals were completed in the N- and S-hemispheres. The reversal times were compared with hemispherical sunspot activity and with the Heliospheric Current Sheet (HCS) tilts, too. It was found that reversals occurred at the epoch of the sunspot activity maximum in Cycles 21 and 23, and after the corresponding maxima in Cycles 22 and 24, and one-two years after maximal HCS tilts calculated in WSO. Reversals in Solar Cycles 21, 22, 23, and 24 were completed first in the N-hemisphere and then in the S-hemisphere after 0.6, 1.1, 0.7, and 0.9 years, respectively. The polarity inversion in the near-polar latitude range pm(55-90)^circ occurred from 0.5 to 2.0 years earlier that the times when the reversals were completed in corresponding hemisphere. Using the maximal smoothed WSO polar field as precursor we estimated that amplitude of Solar Cycle 25 will reach 116 pm 12 in values of smoothed monthly sunspot numbers and will be comparable with the current cycle amplitude equaled to 116.4.
Three-dimensional magnetohydrodynamic simulations of the surface layers of the Sun intrinsically produce a predominantly horizontal magnetic field in the photosphere. This is a robust result in the sense that it arises from simulations with largely different initial and boundary conditions for the magnetic field. While the disk-center synthetic circular and linear polarization signals agree with measurements from Hinode, their center-to-limb variation sensitively depends on the height variation of the horizontal and the vertical field component and they seem to be at variance with the observed behavior.
We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appeared in NOAA Active Region 11039. We found an annular zone (width 3-5) surrounding the umbra (pore) in Ca II H images before the penumbra is formed around the umbra. The penumbra was developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were moved to be distributed at the outer edge of the annular zone and did not come into the zone. There is no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, much before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.
We investigated the role of photospheric plasma motions in the formation and evolution of polar magnetic patches using time-sequence observations with high spatial resolution. The observations were obtained with the spectropolarimeter on board the Hinode satellite. From the statistical analysis using 75 magnetic patches, we found that they are surrounded by strong converging, supergranulation associated flows during their apparent life time and that the converging flow around the patch boundary is better observed in the Doppler velocity profile in the deeper photosphere. Based on our analysis we suggest that the like-polarity magnetic fragments in the polar region are advected and clustered by photospheric converging flows thereby resulting in the formation of polar magnetic patches. Our observations show that, in addition to direct cancellation magnetic patches decay by fragmentation followed by unipolar disappearance or unipolar disappearance without fragmentation. It is possible that the magnetic patches of existing polarity fragment or diffuse away into smaller elements and eventually cancel out with opposite polarity fragments that reach the polar region around solar cycle maximum. This could be one of the possible mechanisms by which the existing polarity decay during the reversal of the polar magnetic field.
Many jets are detected at X-ray wavelengths in the Suns polar regions, and the ejected plasma along the jets has been suggested to contribute mass to the fast solar wind. From in-situ measurements in the magnetosphere, it has been found that the fast solar wind has photospheric abundances while the slow solar wind has coronal abundances. Therefore, we investigated the abundances of polar jets to determine whether they are the same as that of the fast solar wind. For this study, we selected 22 jets in the polar region observed by Hinode/EIS (EUV Imaging Spectrometer) and XRT (X-Ray Telescope) simultaneously on 2007 November 1-3. We calculated the First Ionization Potential (FIP) bias factor from the ratio of the intensity between high (S) and low (Si, Fe) FIP elements using the EIS spectra. The values of the FIP bias factors for the polar jets are around 0.7-1.9, and 75$%$ of the values are in the range of 0.7-1.5, which indicates that they have photospheric abundances similar to the fast solar wind. The results are consistent with the reconnection jet model where photospheric plasma emerges and is rapidly ejected into the fast wind.