Do you want to publish a course? Click here

Abell 1201: a Minor merger at second core passage

250   0   0.0 ( 0 )
 Added by Cheng-Jiun Ma
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the structures and dynamics of the merging cluster Abell~1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500kpc northwest of the center. New Chandra and XMM-Newton data reveal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at ~1000 km/s. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.



rate research

Read More

We present a $250,$ks Chandra observation of the cluster merger A2034 with the aim of understanding the nature of a sharp edge previously characterized as a cold front. The new data reveal that the edge is coherent over a larger opening angle and is significantly more bow-shock-shaped than previously thought. Within $sim 27,$degrees about the axis of symmetry of the edge the density, temperature and pressure drop abruptly by factors of $1.83^{+0.09}_{-0.08}$, $1.85^{+0.41}_{-0.41}$ and $3.4^{+0.8}_{-0.7}$, respectively. This is inconsistent with the pressure equilibrium expected of a cold front and we conclude that the edge is a shock front. We measure a Mach number $M = 1.59^{+0.06}_{-0.07}$ and corresponding shock velocity $v_{rm shock}simeq 2057,$km/s. Using spectra collected at the MMT with the Hectospec multi-object spectrograph we identify 328 spectroscopically confirmed cluster members. Significantly, we find a local peak in the projected galaxy density associated with a bright cluster galaxy which is located just ahead of the nose of the shock. The data are consistent with a merger viewed within $sim 23,$degrees of the plane of the sky. The merging subclusters are now moving apart along a north-south axis approximately $0.3,$Gyr after a small impact parameter core passage. The gas core of the secondary subcluster, which was driving the shock, appears to have been disrupted by the merger. Without a driving piston we speculate that the shock is dying. Finally, we propose that the diffuse radio emission near the shock is due to the revival of pre-existing radio plasma which has been overrun by the shock.
142 - Jennifer M. Lotz 2011
Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged `observability timescale T_obs(z) for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, T_obs(z) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate T_obs(z) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G-M20, and (3) the morphology indicator asymmetry A. Then we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically-motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the range of mass-ratio measured by different techniques and differing parent galaxy selection. The major merger rate per unit co-moving volume for samples selected with constant number density evolves much more strongly with redshift (~ (1+z)^(+3.0 pm 1.1)) than samples selected with constant stellar mass or passively evolving luminosity (~ (1+z)^(+0.1 pm 0.4)). We calculate the minor merger rate (1:4 < M_{sat}/M_{primary} <~ 1:10) by subtracting the major merger rate from close pairs from the `total merger rate determined by G-M20. The implied minor merger rate is ~3 times the major merger rate at z ~ 0.7, and shows little evolution with redshift.
Numerical simulations of minor mergers, typically having mass ratios greater than 3:1, predict little enhancement in the global star formation activity. However, these models also predict that the satellite galaxy is more susceptible to the effects of the interaction than the primary. We use optical integral field spectroscopy and deep optical imaging to study the NGC7771+NGC7770 interacting system (~10:1 stellar mass ratio) to test these predictions. We find that the satellite galaxy NGC7770 is currently experiencing a galaxy-wide starburst with most of the optical light being from young and post-starburst stellar populations(<1Gyr). This galaxy lies off of the local star-forming sequence for composite galaxies with an enhanced integrated specific star formation rate. We also detect in the outskirts of NGC7770 Halpha emitting gas filaments. This gas appears to have been stripped from one of the two galaxies and is being excited by shocks. All these results are consistent with a minor-merger induced episode(s) of star formation in NGC7770 after the first close passage. Such effects are not observed on the primary galaxy NGC7771.
79 - Chong Ge , Ming Sun , Ruo-Yu Liu 2019
Multi-wavelength observations show that Abell 1367 (A1367) is a dynamically young cluster, with at least two subclusters merging along the SE-NW direction. With the wide-field XMM-Newton mosaic of A1367, we discover a previously unknown merger shock at the NW edge of the cluster. We estimate the shock Mach number from the density and temperature jumps as $M_{rho}=1.21pm0.08$ and $M_T=1.60pm0.07$, respectively. This shock region also corresponds to a radio relic discovered with the VLA and GBT, which could be produced by the shock re-acceleration of pre-existing seed relativistic electrons. We suggest that some of the seed relativistic electrons originate from late-type, star-forming galaxies in this region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا