Do you want to publish a course? Click here

Ampleness in the free group

179   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We show that the theory of the free group -- and more generally the theory of any torsion-free hyperbolic group -- is $n$-ample for any $ngeq 1$. We give also an explicit description of the imaginary algebraic closure in free groups.



rate research

Read More

Let $Gamma$ be a torsion-free hyperbolic group. We show that the set of solutions of any system of equations with one variable in $Gamma$ is a finite union of points and cosets of centralizers if and only if any two-generator subgroup of $Gamma$ is free.
We show that any nonabelian free group $F$ of finite rank is homogeneous; that is for any tuples $bar a$, $bar b in F^n$, having the same complete $n$-type, there exists an automorphism of $F$ which sends $bar a$ to $bar b$. We further study existential types and we show that for any tuples $bar a, bar b in F^n$, if $bar a$ and $bar b$ have the same existential $n$-type, then either $bar a$ has the same existential type as a power of a primitive element, or there exists an existentially closed subgroup $E(bar a)$ (resp. $E(bar b)$) of $F$ containing $bar a$ (resp. $bar b$) and an isomorphism $sigma : E(bar a) to E(bar b)$ with $sigma(bar a)=bar b$. We will deal with non-free two-generated torsion-free hyperbolic groups and we show that they are $exists$-homogeneous and prime. This gives, in particular, concrete examples of finitely generated groups which are prime and not QFA.
We show that a profinite group with the same first-order theory as the direct product over all odd primes $p$ of the dihedral group of order $2p$, is necessarily isomorphic to this direct product.
We prove that the automorphism group of the braid group on four strands acts faithfully and geometrically on a CAT(0) 2-complex. This implies that the automorphism group of the free group of rank two acts faithfully and geometrically on a CAT(0) 2-complex, in contrast to the situation for rank three and above.
245 - Michael Handel , Lee Mosher 2014
We study the loxodromic elements for the action of $Out(F_n)$ on the free splitting complex of the rank $n$ free group $F_n$. We prove that each outer automorphism is either loxodromic, or has bounded orbits without any periodic point, or has a periodic point; and we prove that all three possibilities can occur. We also prove that two loxodromic elements are either co-axial or independent, meaning that their attracting/repelling fixed point pairs on the Gromov boundary of the free splitting complex are either equal or disjoint as sets. Each of the alternatives in these results is also characterized in terms of the attracting/repelling lamination pairs of an outer automorphism. As an application, each attracting lamination determines its corresponding repelling lamination independent of the outer automorphism. As part of this study we describe the structure of the subgroup of $Out(F_n)$ that stabilizes the fixed point pair of a given loxodromic outer automorphism, and we give examples which show that this subgroup need not be virtually cyclic. As an application, the action of $Out(F_n)$ on the free splitting complex is not acylindrical, and its loxodromic elements do not all satisfy the WPD property of Bestvina and Fujiwara.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا