No Arabic abstract
We present a formulation of the operator product expansion that is infrared finite to all orders in the attendant massless non-Abelian gauge theory coupling constant, which we will often-times associate with the QCD theory, the theory that we actually have as our primary objective in view of the operation of the LHC at CERN. We make contact in this way with the recently introduced IR-improved DGLAP-CS theory and point-out phenomenological implications accordingly, with an eye toward the precision QCD theory for LHC physics.
We perform the Monte Carlo study of the SU(3) non-Abelian Higgs model. We discuss phase structure and non-Abelian vortices by gauge invariant operators. External magnetic fields induce non-Abelian vortices in the color-flavor locked phase. The spatial distribution of non-Abelian vortices suggests the repulsive vortex-vortex interaction.
Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we present a non-Abelian basis tensor gauge theory formalism. Unlike in the Abelian case, the map between the ordinary gauge field and the basis tensor gauge field is nonlinear. To test the formalism, we compute the beta function and the two-point function at the one-loop level in non-Abelian basis tensor gauge theory and show that it reproduces the well-known results from the usual formulation of non-Abelian gauge theory.
Far-from-equilibrium dynamics of SU(2) gauge theory with Wilson fermions is studied in 1+1 space-time dimensions using a real-time lattice approach. Lattice improved Hamiltonians are shown to be very efficient in simulating Schwinger pair creation and emergent phenomena such as plasma oscillations. As a consequence, significantly smaller lattices can be employed to approach continuum physics in the infinite-volume limit as compared to unimproved implementations. This allows us to compute also higher-order correlation functions including four fermion fields, which give unprecedented insights into the real-time dynamics of the fragmentation process of strings between fermions and antifermions.
We present a brief introduction to the construction of gauge theories on noncommutative spaces with star products. Particular emphasis is given to issues related to non-Abelian gauge groups and charge quantization. This talk is based on joined work with B. Jurco, J. Madore, L. Moeller, S. Schraml and J. Wess.
This paper focuses on extending our previous discussion of an Abelian U(1) gauge theory involving infinite derivatives to a non-Abelian SU(N) case. The renormalization group equation (RGEs) of the SU(N) gauge coupling is calculated and shown to reproduce the local theory $beta$-function in the limit of the non-local scale M $rightarrow infty$. Interestingly, the gauge coupling stops its running beyond the scale $M$, approaching an asymptotically conformal theory.