No Arabic abstract
We have performed accurate iron abundance measurements for 44 red giants (RGs) in the Carina dwarf spheroidal (dSph) galaxy. We used archival, high-resolution spectra (R~38,000) collected with UVES at ESO/VLT either in slit mode (5) or in fiber mode (39, FLAMES/GIRAFFE-UVES). The sample is more than a factor of four larger than any previous spectroscopic investigation of stars in dSphs based on high-resolution (R>38,000) spectra. We did not impose the ionization equilibrium between neutral and singly-ionized iron lines. The effective temperatures and the surface gravities were estimated by fitting stellar isochrones in the V, B-V color-magnitude diagram. To measure the iron abundance of individual lines we applied the LTE spectrum synthesis fitting method using MARCS model atmospheres of appropriate metallicity. We found evidence of NLTE effects between neutral and singly-ionized iron abundances. Assuming that the FeII abundances are minimally affected by NLTE effects, we corrected the FeI stellar abundances using a linear fit between FeI and FeII stellar abundance determinations. We found that the Carina metallicity distribution based on the corrected FeI abundances (44 RGs) has a weighted mean metallicity of [Fe/H]=-1.80 and a weighted standard deviation of sigma=0.24 dex. The Carina metallicity distribution based on the FeII abundances (27 RGs) gives similar estimates ([Fe/H]=-1.72, sigma=0.24 dex). The current weighted mean metallicities are slightly more metal poor when compared with similar estimates available in the literature. Furthermore, if we restrict our analysis to stars with the most accurate iron abundances, ~20 FeI and at least three FeII measurements (15 stars), we found that the range in iron abundances covered by Carina RGs (~1 dex) agrees quite well with similar estimates based on high-resolution spectra.
We present new radial velocity (RV) measurements of old (horizontal branch) and intermediate-age (red clump) stellar tracers in the Carina dwarf spheroidal. They are based on more than 2,200 low-resolution spectra collected with VIMOS at VLT. The targets are faint (20<V<21.5 mag), but the accuracy at the faintest limit is <9 kms-1. These data were complemented with RV measurements either based on spectra collected with FORS2 and FLAMES/GIRAFFE at VLT or available in the literature. We ended up with a sample of 2748 stars and among them 1389 are candidate Carina stars. We found that the intermediate-age stellar component shows a well defined rotational pattern around the minor axis. The western and the eastern side of the galaxy differ by +5 and -4 km s-1 when compared with the main RV peak. The old stellar component is characterized by a larger RV dispersion and does not show evidence of RV pattern. We compared the observed RV distribution with N-body simulations for a former disky dwarf galaxy orbiting a giant MilkyWay-like galaxy (Lokas et al. 2015). We rotated the simulated galaxy by 60 degrees with respect to the major axis, we kept the observer on orbital plane of the dwarf and extracted a sample of stars similar to the observed one. Observed and predicted Vrot/{sigma} ratios across the central regions are in remarkable agreement. This evidence indicates that Carina was a disky dwarf galaxy that experienced several strong tidal interactions with the Milky Way. Owing to these interactions, Carina transformed from a disky to a prolate spheroid and the rotational velocity transformed into random motions.
We present new multi-band (UBVI) time-series data of helium burning variables in the Carina dwarf spheroidal galaxy. The current sample includes 92 RR Lyrae-six of them are new identifications-and 20 Anomalous Cepheids, one of which is new identification. The analysis of the Bailey diagram shows that the luminosity amplitude of the first overtone component in double-mode variables is located along the long-period tail of regular first overtone variables, while the fundamental component is located along the short-period tale of regular fundamental variables. This evidence further supports the transitional nature of these objects. Moreover, the distribution of Carina double-mode variables in the Petersen diagram (P_1/P_0 vs P_0) is similar to metal-poor globulars (M15, M68), to the dwarf spheroidal Draco and to the Galactic Halo. This suggests that the Carina old stellar population is metal-poor and affected by a small spread in metallicity. We use trigonometric parallaxes for five field RR Lyrae stars to provide an independent estimate of the Carina distance using the observed reddening free Period--Wesenheit [PW, (BV)] relation. Theory and observations indicate that this diagnostic is independent of metallicity. We found a true distance modulus of mu=20.01pm0.02 (standard error of the mean) pm0.05 (standard deviation) mag. We also provided independent estimates of the Carina true distance modulus using four predicted PW relations (BV, BI, VI, BVI) and we found: mu=(20.08pm0.007pm0.07) mag, mu=(20.06pm0.006pm0.06) mag, mu=(20.07pm0.008pm0.08) mag and mu=(20.06pm0.006pm0.06) mag. Finally, we identified more than 100 new SX Phoenicis stars that together with those already known in the literature (340) make Carina a fundamental laboratory to constrain the evolutionary and pulsation properties of these transitional variables.
We have carried out a survey for 12CO J=1-0 and J=2-1 emission in the 260 early-type galaxies of the volume-limited Atlas3D sample, with the goal of connecting their star formation and assembly histories to their cold gas content. This is the largest volume-limited CO survey of its kind and is the first to include many Virgo Cluster members. Sample members are dynamically hot galaxies with a median stellar mass 3times 10^{10} Msun; they are selected by morphology rather than colour, and the bulk of them lie on the red sequence. The overall CO detection rate is 56/259 = 0.22 error 0.03, with no dependence on K luminosity and only a modest dependence on dynamical mass. There are a dozen CO detections among the Virgo Cluster members; statistical analysis of their H_2 mass distributions and their dynamical status within the cluster shows that the clusters influence on their molecular masses is subtle at best, even though (unlike spirals) they seem to be virialized within the cluster. We suggest that the cluster members have retained their molecular gas through several Gyr residences in the cluster. There are also a few extremely CO-rich early-type galaxies with H_2 masses >= 10^9 Msun, and these are in low density environments. We do find a significant trend between molecular content and the stellar specific angular momentum. The galaxies of low angular momentum also have low CO detection rates, suggesting that their formation processes were more effective at destroying molecular gas or preventing its re-accretion. We speculate on the implications of these data for the formation of various sub-classes of early-type galaxies.
Trumpler 16 is a well--known rich star cluster containing the eruptive supergiant $eta$ Carinae and located in the Carina star-forming complex. In the context of the Chandra Carina Complex Project, we study Trumpler 16 using new and archival X-ray data. A revised X-ray source list of the Trumpler 16 region contains 1232 X-ray sources including 1187 likely Carina members. These are matched to 1047 near-infrared counterparts detected by the HAWK-I instrument at the VLT allowing for better selection of cluster members. The cluster is irregular in shape. Although it is roughly circular, there is a high degree of sub-clustering, no noticeable central concentration and an extension to the southeast. The high--mass stars show neither evidence of mass segregation nor evidence of strong differential extinction. The derived power-law slope of the X-ray luminosity function for Trumpler 16 reveals a much steeper function than the Orion Nebula Cluster implying different ratio of solar- to higher-mass stars. We estimate the total Trumpler 16 pre-main sequence population to be > 6500 Class II and Class III X-ray sources. An overall K-excess disk frequency of ~ 8.9% is derived using the X-ray selected sample, although there is some variation among the sub-clusters, especially in the Southeastern extension. X-ray emission is detected from 29 high--mass stars with spectral types between B2 and O3.
One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides type Ia supernovae (SNeIa). These include common envelope systems, CVs, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions.