Do you want to publish a course? Click here

Cube-shape diffuse scattering and the ground state of $mathrm{BaMg}_{1/3}mathrm{Ta}_{2/3} mathrm{O}_3$

149   0   0.0 ( 0 )
 Added by Antonio Cervellino
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quite unusual diffuse scattering phenomenology was observed in the single-crystal X-ray diffraction pattern of cubic perovskite BMT ($mathrm{BaMg}_{1/3}mathrm{Ta}_{2/3}mathrm{O}_3$). The intensity of the scattering is parametrized as a set of cube-like objects located at the centers of reciprocal space unit cells, resembling very broad and cubic-shaped (1/2,1/2,1/2)-satellites. BMT belongs to perovskites of formula AB$_{1/3}$B$_{2/3}$O$_{3}$ (A=Mg, B$=$Ta, B$=$Mg). The cubes of the intensity can be attributed to the partial correlations of the occupancies of the B site. The pair correlation function is the Fourier transform of the diffuse scattering intensity and the latters idealized form yields the unusual property of a power-law correlation decay with distance. Up to now this is observed only in a few exotic instances of magnetic order or nematic crystals. Therefore it cannot be classified as a short-range order phenomenon, as in most situations originating diffuse scattering. A Monte-Carlo search in configuration space yielded solutions that reproduce faithfully the observed diffuse scattering. Analysis of the results in terms of the electrostatic energy and the entropy point to this phase of BMT as a metastable state, kinetically locked, which could be the equilibrium state just below the melting point.



rate research

Read More

The defect in diamond formed by a vacancy surrounded by three nearest-neighbor nitrogen atoms and one carbon atom, $mathrm{N}_{3}mathrm{V}$, is found in $approx98%$ of natural diamonds. Despite $mathrm{N}_{3}mathrm{V}^{0}$ being the earliest electron paramagnetic resonance spectrum observed in diamond, to date no satisfactory simulation of the spectrum for an arbitrary magnetic field direction has been produced due to its complexity. In this work, $mathrm{N}_{3}mathrm{V}^{0}$ is identified in $^{15}mathrm{N}$-doped synthetic diamond following irradiation and annealing. The $mathrm{^{15}N}_{3}mathrm{V}^{0}$ spin Hamiltonian parameters are revised and used to refine the parameters for $mathrm{^{14}N}_{3}mathrm{V}^{0}$, enabling the latter to be accurately simulated and fitted for an arbitrary magnetic field direction. Study of $mathrm{^{15}N}_{3}mathrm{V}^{0}$ under excitation with green light indicates charge transfer between $mathrm{N}_{3}mathrm{V}$ and $mathrm{N_s}$. It is argued that this charge transfer is facilitated by direct ionization of $mathrm{N}_{3}mathrm{V}^{-}$, an as-yet unobserved charge state of $mathrm{N}_{3}mathrm{V}$.
We show that the observed time-reversal symmetry breaking (TRSB) of the superconducting state in $mathrm{Sr}_{2}mathrm{Ru}mathrm{O}_{4}$ can be understood as originating from inhomogeneous strain fields near edge dislocations of the crystal. Specifically, we argue that, without strain inhomogeneities, $mathrm{Sr}_{2}mathrm{Ru}mathrm{O}_{4}$ is a single-component, time-reversal symmetric superconductor, likely with $d_{x^{2}-y^{2}}$ symmetry. However, due to the strong strain inhomogeneities generated by dislocations, a slowly-decaying sub-leading pairing state contributes to the condensate in significant portions of the sample. As it phase winds around the dislocation, time-reversal symmetry is locally broken. Global phase locking and TRSB occur at a sharp Ising transition that is not accompanied by a change of the single-particle gap and yields a very small heat capacity anomaly. Our model thus explains the puzzling absence of a measurable heat capacity anomaly at the TRSB transition in strained samples, and the dilute nature of the time-reversal symmetry broken state probed by muon spin rotation experiments. We propose that plastic deformations of the material may be used to manipulate the onset of broken time-reversal symmetry.
We report comprehensive temperature and doping-dependences of the Raman scattering spectra for $mathrm{BaFe_{2}}(mathrm{As}_{1-x}mathrm{P}_{x}mathrm{)_{2}}$ ($x =$ 0, 0.07, 0.24, 0.32, and 0.38), focusing on the nematic fluctuation and the superconducting responses. With increasing $x$, the bare nematic transition temperature estimated from the Raman spectra reaches $T =$ 0 K at the optimal doping, which indicates a quantum critical point (QCP) at this composition. In the superconducting compositions, in addition to the pair breaking peaks observed in the $A_{mathrm{1g}}$ and $B_{mathrm{1g}}$ spectra, another strong $B_{mathrm{1g}}$ peak appears below the superconducting transition temperature which is ascribed to the nematic resonance peak. The observation of this peak indicates significant nematic correlations in the superconducting state near the QCP in this compound.
The crystal structure of the PbMg$_{1/3}$Ta$_{2/3}$O$_3$ (PMT) relaxor ferroelectric was studied under hydrostatic pressure up to $sim 7$ GPa by means of powder neutron diffraction. We find a drastic pressure-induced decrease of the lead displacement from the inversion centre which correlates with an increase by $sim$ 50 % of the anisotropy of the oxygen temperature factor. The vibrations of the Mg/Ta are, in contrast, rather pressure insensitive. We attribute these changes being responsible for the previously reported pressure-induced suppression of the anomalous dielectric permittivity and diffuse scattering in relaxor ferroelectrics.
We investigated SrFe$mathrm{_2}$(As$mathrm{_{1-x}}$P$mathrm{_x}$)$mathrm{_2}$ single crystals with four different phosphorus concentrations x in the superconducting phase (x = 0.35, 0.46) and in the magnetic phase (x = 0, 0.2). The superconducting samples display a V-shaped superconducting gap, which suggests nodal superconductivity. Furthermore we determined the superconducting coherence length by measuring the spatially resolved superconducting density of states (DOS). Using inelastic tunneling spectroscopy we investigated excitations in the samples with four different phosphorus concentrations. Inelastic peaks are related to bosonic modes. Phonon and non-phonon mechanism for the origin of these peaks are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا