Do you want to publish a course? Click here

Spin parity and broken symmetry in finite spin-1/2 chains with frustrated exchange: quantum transition from high to low spin

125   0   0.0 ( 0 )
 Added by Manoranjan Kumar
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exact diagonalization of finite spin-1/2 chains with periodic boundary conditions is applied to the ground state (gs) of chains with ferromagnetic (F) exchange $J_1 < 0$between first neighbors, antiferromagnetic (AF) exchange $J_2 = alpha J_1 > 0$between second neighbors, and axial anisotropy $0 le Delta le 1$. In zero field, the gs is in the $S_z = 0$ sector for the relevant parameters and is doubly degenerate at multiple points $gamma_m = (alpha_m, Delta_m)$ in the $alpha$, $Delta$ plane. Degeneracy under inversion at sites or spin parity or both leads, respectively, to a bond order wave (BOW), to staggered magnetization or to vector chiral (VC) order. Exact results up to $N = 28$ spins directly yield order parameters and spin correlation functions whose weak N dependencies allow inferences about infinite chains. The high-spin gs at $J_2 = 0$ changes discontinuously at $gamma_1 = (-1/4, 1)$ to a singlet in the isotropic ($Delta = 1$) chain. The transition from high to low spin $S(alpha, Delta)$ is continuous for $ Delta < Delta_B = 0.95 pm 0.01$ on the degeneracy line $alpha_1(Delta)$. The gs has staggered magnetization between $Delta_A = 0.72$ and $Delta_B$, and a BOW for $Delta < Delta_A$. When both inversion and spin parity are reversed at $gamma_m$, the correlation functions $C(p)$ for spins separated by $p$ sites are identical. $C(p)$ minima are shifted by $pi/2$ from the minima of VC order parameters at separation $p$, consistent with right and left-handed helices along the z axis and spins in the xy plane. Degenerate gs of finite chains are related to quantum phase diagrams of extended $alpha$, $Delta$ chains, with good agreement for order parameters along the line $alpha_1(Delta)$.



rate research

Read More

The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-order-wave (BOW) phases with finite-range spin correlations. Exact diagonalization and density matrix renormalization group (DMRG) calculations of S(q) indicate a decoupled phase with QLRO and q_m = pi/2 in chains with large antiferromagnetic exchange between second neighbors. S(q_m) identifies quantum phase transitions based on GS spin correlations.
We analyze the crossover from Kondo to weak-link regime by means of a model of tunable bond impurities in the middle of a spin-1/2 XXZ Heisenberg chain. We study the Kondo screening cloud and estimate the Kondo length by combining perturbative renormalization group approach with the exact numerical calculation of the integrated real-space spin-spin correlation functions. We show that, when the spin impurity is symmetrically coupled to the two parts of the chain with realistic values of the Kondo coupling strengths and spin-parity symmetry is preserved, the Kondo length takes values within the reach of nowadays experimental technology in ultracold-atom setups. In the case of non-symmetric Kondo couplings and/or spin parity broken by a nonzero magnetic field applied to the impurity, we discuss how Kondo screening redistributes among the chain as a function of the asymmetry in the couplings and map out the shrinking of the Kondo length when the magnetic field induces a crossover from Kondo impurity to weak-link physics.
We study the magnetic excitations on top of the plateaux states recently discovered in spin-Peierls systems in a magnetic field. We show by means of extensive density matrix renormalization group (DMRG) computations and an analytic approach that one single spin-flip on top of $M=1-frac2N$ ($N=3,4,...$) plateau decays into $N$ elementary excitations each carrying a fraction $frac1N$ of the spin. This fractionalization goes beyond the well-known decay of one magnon into two spinons taking place on top of the M=0 plateau. Concentrating on the $frac13$ plateau (N=3) we unravel the microscopic structure of the domain walls which carry fractional spin-$frac13$, both from theory and numerics. These excitations are shown to be noninteracting and should be observable in x-ray and nuclear magnetic resonance experiments.
Quantum spin ice materials, pyrochlore magnets with competing Ising and transverse exchange interactions, have been widely discussed as candidates for a quantum spin-liquid ground state. Here, motivated by quantum chemical calculations for Pr pyrochlores, we present the results of a study for frustrated transverse exchange. Using a combination of variational calculations, exact diagonalisation, numerical linked-cluster and series expansions, we find that the previously-studied U(1) quantum spin liquid, in its pi-flux phase, transforms into a nematic quantum spin liquid at a high-symmetry, SU(2) point.
167 - M. Pregelj , O. Zaharko , M. Herak 2016
We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $beta$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا