Do you want to publish a course? Click here

Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters

223   0   0.0 ( 0 )
 Added by Michael L. Brown
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and the scale radius (theta_500) of each cluster. Our resulting constraints in the Y_500-theta_500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.



rate research

Read More

Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 x R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from XMM-Newton in the region in which the profiles overlap (i.e., [0.1-1]R500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is slightly flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0, c500, gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3 x R500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos.
The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Plancks wide angular scale and frequency coverage, together with its high sensitivity, allow a detailed study of this large object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure, which correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find a good agreement between the SZ signal (or Compton paranmeter, y_c) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Due to its proximity to us, the gas beyond the virial radius can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions.
We present 16-GHz observations using the Arcminute Microkelvin Imager (AMI) of 11 clusters with 7 x 10^{37}W < L_X < 11 x 10^{37}W (h_{50}=1.0) selected from the Local Cluster Substructure Survey (LoCuSS) and compare them to X-ray data. We use a fast, Bayesian cluster analysis to explore the high-dimensional parameter space of the cluster-plus-sources model and obtain robust cluster parameter estimates in the presence of radio point sources, receiver noise and primordial CMB anisotropy. Our analysis fits a spherical, isothermal beta-model to our data and assumes the cluster follows the theoretical mass-temperature relation. Large-scale cluster parameters internal to r_{500} are derived under the assumption of hydrostatic equilibrium. Posterior distributions for the large-scale parameters of 8 of our clusters are given; SZ effects towards Abell 1704 and Zw0857.9+2107 were not detected and our spherical beta-profile was found to be an inadequate fit to the decrement on our map for Abell 2409.
We present observations from the Small Array of the Arcminute Microkelvin Imager (AMI) of eight high X-ray luminosity galaxy cluster systems selected from the Local Cluster Substructure Survey (LoCuSS) sample.We detect the Sunyaev-Zeldovich (SZ) effect in seven of these clusters. With the assumptions that galaxy clusters are isothermal, have a density profile described by a spherical b -model and obey the theoretical M-T relation, we are able to derive cluster parameters at r200 from our SZ data. With the additional assumption of hydrostatic equilibrium we are able to derive parameters at r500. We present posterior probability distributions for cluster parameters such as mass, radius and temperature (TSZ, MT). Combining our sample with that of AMI Consortium: Rodriguez-Gonzalvez et al. (2011) and using large-radius X-ray temperature estimates (TX) from Chandra and Suzaku observations, we find that there is reasonable correspondence between TX and TSZ,MT values at low TX, but that for clusters with TX above around 6keV the correspondence breaks down with TX exceeding TSZ, MT; we stress that this finding is based on just ten clusters.
By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift $zapprox 0.1$. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the CGC (Central Galaxy Catalogue) samples extracted from Sloan Digital Sky Survey (DR7) data. For the foreground-cleaned maps, we find $1.8$-$2.5sigma$ detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W band ($3.3sigma$). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a $3.0$-$3.7$$sigma$ detection of the peculiar motion of extended gas on Mpc scales, in flows correlated up to distances of 80-100 $h^{-1}$ Mpc. Both the pairwise momentum estimates and kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of $> 1$ Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydro simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find $tau_T=(1.4pm0.5)times 10^{-4}$; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal SZ observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا