No Arabic abstract
We present 16-GHz observations using the Arcminute Microkelvin Imager (AMI) of 11 clusters with 7 x 10^{37}W < L_X < 11 x 10^{37}W (h_{50}=1.0) selected from the Local Cluster Substructure Survey (LoCuSS) and compare them to X-ray data. We use a fast, Bayesian cluster analysis to explore the high-dimensional parameter space of the cluster-plus-sources model and obtain robust cluster parameter estimates in the presence of radio point sources, receiver noise and primordial CMB anisotropy. Our analysis fits a spherical, isothermal beta-model to our data and assumes the cluster follows the theoretical mass-temperature relation. Large-scale cluster parameters internal to r_{500} are derived under the assumption of hydrostatic equilibrium. Posterior distributions for the large-scale parameters of 8 of our clusters are given; SZ effects towards Abell 1704 and Zw0857.9+2107 were not detected and our spherical beta-profile was found to be an inadequate fit to the decrement on our map for Abell 2409.
We present observations from the Small Array of the Arcminute Microkelvin Imager (AMI) of eight high X-ray luminosity galaxy cluster systems selected from the Local Cluster Substructure Survey (LoCuSS) sample.We detect the Sunyaev-Zeldovich (SZ) effect in seven of these clusters. With the assumptions that galaxy clusters are isothermal, have a density profile described by a spherical b -model and obey the theoretical M-T relation, we are able to derive cluster parameters at r200 from our SZ data. With the additional assumption of hydrostatic equilibrium we are able to derive parameters at r500. We present posterior probability distributions for cluster parameters such as mass, radius and temperature (TSZ, MT). Combining our sample with that of AMI Consortium: Rodriguez-Gonzalvez et al. (2011) and using large-radius X-ray temperature estimates (TX) from Chandra and Suzaku observations, we find that there is reasonable correspondence between TX and TSZ,MT values at low TX, but that for clusters with TX above around 6keV the correspondence breaks down with TX exceeding TSZ, MT; we stress that this finding is based on just ten clusters.
We report the first detection of a Sunyaev-Zeldovich (S-Z) decrement with the Arcminute Microkelvin Imager (AMI). We have made commissioning observations towards the cluster A1914 and have measured an integrated flux density of -8.61 mJy in a uv-tapered map with noise level 0.19 mJy/beam. We find that the spectrum of the decrement, measured in the six channels between 13.5-18GHz, is consistent with that expected for a S-Z effect. The sensitivity of the telescope is consistent with the figures used in our simulations of cluster surveys with AMI.
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and the scale radius (theta_500) of each cluster. Our resulting constraints in the Y_500-theta_500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.
The Arcminute Microkelvin Imager is a pair of interferometer arrays operating with six frequency channels spanning 13.9-18.2 GHz, with very high sensitivity to angular scales 30-10. The telescope is aimed principally at Sunyaev-Zeldovich imaging of clusters of galaxies. We discuss the design of the telescope and describe and explain its electronic and mechanical systems.
The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly from geostationary satellites that contaminate observations at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators -- one for each of AMIs two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two 2.3 GHz-wide sub-bands which are each digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.