Do you want to publish a course? Click here

Quantum walk on distinguishable non-interacting many-particles and indistinguishable two-particle

128   0   0.0 ( 0 )
 Added by C. M. Chandrashekar
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an investigation of many-particle quantum walks in systems of non-interacting distinguishable particles. Along with a redistribution of the many-particle density profile we show that the collective evolution of the many-particle system resembles the single-particle quantum walk evolution when the number of steps is greater than the number of particles in the system. For non-uniform initial states we show that the quantum walks can be effectively used to separate the basis states of the particle in position space and grouping like state together. We also discuss a two-particle quantum walk on a two- dimensional lattice and demonstrate an evolution leading to the localization of both particles at the center of the lattice. Finally we discuss the outcome of a quantum walk of two indistinguishable particles interacting at some point during the evolution.



rate research

Read More

We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position degree of freedom and between the two spatial ($x-y$) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.
Two important results of quantum physics are the textit{no-cloning} theorem and the textit{monogamy of entanglement}. The former forbids the creation of an independent and identical copy of an arbitrary unknown quantum state and the latter restricts the shareability of quantum entanglement among multiple quantum systems. For distinguishable particles, one of these results imply the other. In this Letter, we show that in qubit systems with indistinguishable particles (where each particle cannot be addressed individually), a maximum violation of the monogamy of entanglement is possible by the measures that are monogamous for distinguishable particles. To derive this result, we formulate the degree of freedom trace-out rule for indistinguishable particles corresponding to a spatial location where each degree of freedom might be entangled with the other degrees of freedom. Our result removes the restriction on the shareability of quantum entanglement for indistinguishable particles, without contradicting the no-cloning theorem.
We present a scheme to describe the dynamics of accelerating discrete-time quantum walk for one- and two-particle in position space. We show the effect of acceleration in enhancing the entanglement between the particle and position space in one-particle quantum walk and in generation of entanglement between the two unentangled particle in two-particle quantum walk. By introducing the disorder in the form of phase operator we study the transition from localization to delocalization as a function of acceleration. These inter-winding connection between acceleration, entanglement generation and localization along with well established connection of quantum walks with Dirac equation can be used to probe further in the direction of understanding the connection between acceleration, mass and entanglement in relativistic quantum mechanics and quantum field theory. Expansion of operational tools for quantum simulations and for modelling quantum dynamics of accelerated particle using quantum walks is an other direction where these results can play an important role.
A full treatment for the scattering of an arbitrary number of bosons through a Bell multiport beam splitter is presented that includes all possible output arrangements. Due to exchange symmetry, the event statistics differs dramatically from the classical case in which the realization probabilities are given by combinatorics. A law for the suppression of output configurations is derived and shown to apply for the majority of all possible arrangements. Such multiparticle interference effects dominate at the level of single transition amplitudes, while a generic bosonic signature can be observed when the average number of occupied ports or the typical number of particles per port is considered. The results allow to classify in a common approach several recent experiments and theoretical studies and disclose many accessible quantum statistical effects involving many particles.
Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions using an optical fiber network. With our broad spectrum of quantum coins we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong non-linearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا