We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single crystals in the doping range of 0.5<= x <= 0.8 for temperatures up to 1000 K. The magnetism below room temperature is described by paramagnetic Co2+ in the high-spin state and by Co3+ in the non-magnetic low-spin state. Above room temperature, an increase in susceptibility compared to the behavior expected from Co2+ is seen, which we attribute to a spin-state transition of Co3+. The susceptibility is analyzed by comparison to full-multiplet calculations for the thermal population of the high- and intermediate-spin states of Co3+.
We present measurements of the magnetic susceptibility and of the thermal expansion of a LaCoO$_3$ single crystal. Both quantities show a strongly anomalous temperature dependence. Our data are consistently described in terms of a spin-state transition of the Co$^{3+}$ ions with increasing temperature from a low-spin ground state to an intermediate-spin state without (100K - 500K) and with (>500K) orbital degeneracy. We attribute the lack of orbital degeneracy up to 500K to (probably local) Jahn-Teller distortions of the CoO$_6$ octahedra. A strong reduction or disappearance of the Jahn-Teller distortions seems to arise from the insulator-to-metal transition around 500 K.
We use ultra-high resolution, tunable, VUV laser-based, angle-resolved photoemission spectroscopy (ARPES) and temperature and field dependent resistivity and thermoelectric power (TEP) measurements to study the electronic properties of WTe2, a compound that manifests exceptionally large, temperature dependent magnetoresistance. The temperature dependence of the TEP shows a change of slope at T=175 K and the Kohler rule breaks down above 70-140 K range. The Fermi surface consists of two electron pockets and two pairs of hole pockets along the X-Gamma-X direction. Upon increase of temperature from 40K, the hole pockets gradually sink below the chemical potential. Like BaFe2As2, WTe2 has clear and substantial changes in its Fermi surface driven by modest changes in temperature. In WTe2, this leads to a rare example of temperature induced Lifshitz transition, associated with the complete disappearance of the hole pockets. These dramatic changes of the electronic structure naturally explain unusual features of the transport data.
We report a $^{35}$Cl nuclear magnetic resonance study in the honeycomb lattice, $alpha$-RuCl$_3$, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that $alpha$-RuCl$_3$ exhibits a magnetic field-induced QSL. For fields larger than $sim 10$ T a spin-gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with increasing magnetic field, reaching $sim50$ K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and in particular exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced, gapped QSL phase has indeed been predicted in the Kitaev model.
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of great debate. We conducted 17-O single crystal NMR measurements of the S=1/2 kagome lattice in herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrate that the intrinsic local spin susceptibility $chi_{kagome}$ deduced from the 17-O NMR frequency shift asymptotes to zero below temperature T ~ 0.03 J, where J ~ 200 K is the Cu-Cu super-exchange interaction. Combined with the magnetic field dependence of $chi_{kagome}$ we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.
We have investigated the pressure-induced spin-state transition in Co$^{2+}$ systems in terms of a competition between the Hunds exchange energy ($J$) and the crystal-field splitting ($Delta_{CF}$). First, we show the universal metastability of the low-spin state in octahedrally coordinated Co$^{2+}$ systems. Then we present the strategy to search for a Co$^{2+}$ system, for which the mechanism of spin-state and metal-insulator transitions is governed not by the Mott physics but by $J$ vs. $Delta_{CF}$ physics. Using CoCl$_{2}$ as a prototypical Co$^{2+}$ system, we have demonstrated the pressure-induced spin-state transition from high-spin to low-spin, which is accompanied with insulator-to-metal and antiferromagnetic to half-metallic ferromagnetic transitions. Combined with metastable character of Co$^{2+}$ and the high compressibility nature of CoCl$_{2}$, the transition pressure as low as 27 GPa can be identified on the basis of $J$ vs. $Delta_{CF}$ physics.