Do you want to publish a course? Click here

Two-Dimensional Magnetohydrodynamic Simulations of Barred Galaxies

498   0   0.0 ( 0 )
 Added by Woong-Tae Kim
 Publication date 2012
  fields Physics
and research's language is English
 Authors Woong-Tae Kim




Ask ChatGPT about the research

Barred galaxies are known to possess magnetic fields that may affect the properties of bar substructures such as dust lanes and nuclear rings. We use two-dimensional high-resolution magnetohydrodynamic (MHD) simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. The gaseous medium is assumed to be infinitesimally-thin, isothermal, non-self-gravitating, and threaded by initially uniform, azimuthal magnetic fields. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks, temporarily causing the dust lanes to bend into an L shape and eventually leading to a smaller and more centrally distributed ring than in unmagnetized models. The mass inflow rates in magnetized models correspondingly become larger, by more than two orders of magnitude when the initial fields have an equipartition value with thermal energy, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo due to the combined action of the bar potential and background shear operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms has a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.



rate research

Read More

Many barred galaxies harbor small-scale secondary bars in the center. The evolution of such double-barred galaxies is still not well understood, partly because of a lack of realistic N-body models with which to study them. Here we report the generation of such systems in the presence of rotating pseudobulges. We demonstrate with high mass and force resolution collisionless N-body simulations that long-lived secondary bars can form spontaneously without requiring gas, contrary to previous claims. We find that secondary bars rotate faster than primary ones. The rotation is not rigid: the secondary bars pulsate, with their amplitude and pattern speed oscillating as they rotate through the primary bars. This self-consistent study supports previous work based on orbital analysis in the potential of two rigidly rotating bars. We also characterize the density and kinematics of the N-body simulations of the double-barred galaxies, compare with observations to achieve a better understanding of such galaxies. The pulsating nature of secondary bars may have important implications for understanding the central region of double-barred galaxies.
136 - Woong-Tae Kim 2011
The inner regions of barred galaxies contain substructures such as off-axis shocks, nuclear rings, and nuclear spirals. These substructure may affect star formation, and control the activity of a central black hole (BH) by determining the mass inflow rate. We investigate the formation and properties of such substructures using high-resolution, grid-based hydrodynamic simulations. The gaseous medium is assumed to be infinitesimally-thin, isothermal, and non-self-gravitating. The stars and dark matter are represented by a static gravitational potential with four components: a stellar disk, the bulge, a central BH, and the bar. To investigate various galactic environments, we vary the gas sound speed c_s as well as the mass of the central BH M_BH. Once the flow has reached a quasi-steady state, off-axis shocks tend to move closer to the bar major axis as c_s increases. Nuclear rings shrink in size with increasing c_s, but are independent of M_BH, suggesting that ring position is not determined by the Lindblad resonances. Rings in low-c_s models are narrow since they are occupied largely by gas on x2-orbits and well decoupled from nuclear spirals, while they become broad because of large thermal perturbations in high-c_s models. Nuclear spirals persist only when either c_s is small or M_BH is large; they would otherwise be destroyed completely by the ring material on eccentric orbits. The shape and strength of nuclear spirals depend sensitively on c_s and M_BH such that they are leading if both c_s and M_BH are small, weak trailing if c_s is small and M_BH is large, and strong trailing if both c_s and M_BH are large. While the mass inflow rate toward the nucleus is quite small in low-c_s models because of the presence of a narrow nuclear ring, it becomes larger than 0.01 Msun/yr when c_s is large, providing a potential explanation of nuclear activity in Seyfert galaxies.
NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ring extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_sun$ yr$^{-1}$ into the region within the starburst ring even after its formation, leading to the coexistence of both a nuclear ring and a circumnuclear disk.
156 - Woong-Tae Kim , Woo-Young Seo , 2012
Using hydrodynamic simulations, we investigate the physical properties of gaseous substructures in barred galaxies and their relationships with the bar strength. The gaseous medium is assumed to be isothermal and unmagnetized. The bar potential is modeled as a Ferrers prolate with index n. To explore situations with differing bar strength, we vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions as functions of fbar and the aspect ratio for the bar strength Qb and the radius r(Qb) where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar=0.25-0.5 and n<1. Dust lanes approximately follow one of x1-orbits and tend to be more straight under a stronger and more elongated bar, but are insensitive to the presence of self-gravity. A nuclear ring of a conventional x2 type forms only when the bar is not so massive or elongated. The radius of an x2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb, and slightly larger when self-gravity is included. This evidences that the ring position is not determined by the resonance but by the amount of angular momentum loss at dust-lane shocks. Nuclear spirals exist only when the ring is of the x2-type and sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out as being tightly-wound and weak, and then due to the nonlinear effect unwind and become stronger until turning into shocks, with an unwinding rate higher for larger Qb. The mass inflow rate to the galaxy center is found to be less than 0.01 Msun/yr for models with Qb<0.2, while becoming larger than 0.1 Msun/yr when Qb>0.2 and self-gravity is included.
218 - I. Marinova 2009
We present a study of bar and host disk evolution in a dense cluster environment, based on a sample of ~800 bright (MV <= -18) galaxies in the Abell 901/2 supercluster at z~0.165. We use HST ACS F606W imaging from the STAGES survey, and data from Spitzer, XMM-Newton, and COMBO-17. We identify and characterize bars through ellipse-fitting, and other morphological features through visual classification. (1) We explore three commonly used methods for selecting disk galaxies. We find 625, 485, and 353 disk galaxies, respectively, via visual classification, a single component Sersic cut (n <= 2.5), and a blue-cloud cut. In cluster environments, the latter two methods miss 31% and 51%, respectively, of visually-identified disks. (2) For moderately inclined disks, the three methods of disk selection yield a similar global optical bar fraction (f_bar-opt) of 34% +10%/-3%, 31% +10%/-3%, and 30% +10%/-3%, respectively. (3) f_bar-opt rises in brighter galaxies and those which appear to have no significant bulge component. Within a given absolute magnitude bin, f_bar-opt is higher in visually-selected disk galaxies that have no bulge as opposed to those with bulges. For a given morphological class, f_bar-opt rises at higher luminosities. (4) For bright early-types, as well as faint late-type systems with no evident bulge, the optical bar fraction in the Abell 901/2 clusters is comparable within a factor of 1.1 to 1.4 to that of field galaxies at lower redshifts (5) Between the core and the virial radius of the cluster at intermediate environmental densities, the optical bar fraction does not appear to depend strongly on the local environment density and varies at most by a factor of ~1.3. We discuss the implications of our results for the evolution of bars and disks in dense environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا