Do you want to publish a course? Click here

Long-lived double-barred galaxies in N-body simulations

192   0   0.0 ( 0 )
 Added by Juntai Shen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many barred galaxies harbor small-scale secondary bars in the center. The evolution of such double-barred galaxies is still not well understood, partly because of a lack of realistic N-body models with which to study them. Here we report the generation of such systems in the presence of rotating pseudobulges. We demonstrate with high mass and force resolution collisionless N-body simulations that long-lived secondary bars can form spontaneously without requiring gas, contrary to previous claims. We find that secondary bars rotate faster than primary ones. The rotation is not rigid: the secondary bars pulsate, with their amplitude and pattern speed oscillating as they rotate through the primary bars. This self-consistent study supports previous work based on orbital analysis in the potential of two rigidly rotating bars. We also characterize the density and kinematics of the N-body simulations of the double-barred galaxies, compare with observations to achieve a better understanding of such galaxies. The pulsating nature of secondary bars may have important implications for understanding the central region of double-barred galaxies.



rate research

Read More

120 - Juntai Shen 2007
Although at least one quarter of early-type barred galaxies host secondary stellar bars embedded in their large-scale primary counterparts, the dynamics of such double barred galaxies are still not well understood. Recently we reported success at simulating such systems in a repeatable way in collisionless systems. In order to further our understanding of double-barred galaxies, here we characterize the density and kinematics of the N-body simulations of these galaxies. This will facilitate comparison with observations and lead to a better understanding of the observed double-barred galaxies. We find the shape and size of our simulated secondary bars are quite reasonable compared to the observed ones. We demonstrate that an authentic decoupled secondary bar may produce only a weak twist of the kinematic minor axis in the stellar velocity field, due to the relatively large random motion of stars in the central region. We also find that the edge-on nuclear bars are probably not related to boxy peanut-shaped bulges which are most likely to be edge-on primary large-scale bars. Finally we demonstrate that the non-rigid rotation of the secondary bar causes its pattern speed not to be derived with great accuracy using the Tremaine-Weinberg method. We also compare with observations of NGC 2950, a prototypical double-barred early-type galaxy, which suggest that the nuclear bar may be rotating in the opposite sense as the primary.
$N$-body integrations are used to model a wide range of astrophysical dynamics, but they suffer from errors which make their orbits diverge exponentially in time from the correct orbits. Over long time-scales, their reliability needs to be established. We address this reliability by running a three-body planetary system over about $200$ e-folding times. Using nearby initial conditions, we can construct statistics of the long-term phase-space structure and compare to rough estimates of resonant widths of the system. We compared statistics for a wide range of numerical methods, including a Runge--Kutta method, Wisdom--Holman method, symplectic corrector methods, and a method by Laskar and Robutel. Improving an integrator did not increase the phase space accuracy, but simply increasing the number of initial conditions did. In fact, the statistics of a higher order symplectic corrector method were inconsistent with the other methods in one test.
509 - Woong-Tae Kim 2012
Barred galaxies are known to possess magnetic fields that may affect the properties of bar substructures such as dust lanes and nuclear rings. We use two-dimensional high-resolution magnetohydrodynamic (MHD) simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. The gaseous medium is assumed to be infinitesimally-thin, isothermal, non-self-gravitating, and threaded by initially uniform, azimuthal magnetic fields. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks, temporarily causing the dust lanes to bend into an L shape and eventually leading to a smaller and more centrally distributed ring than in unmagnetized models. The mass inflow rates in magnetized models correspondingly become larger, by more than two orders of magnitude when the initial fields have an equipartition value with thermal energy, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo due to the combined action of the bar potential and background shear operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms has a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.
The observed velocities of the gas in barred galaxies are a combination of the azimuthally-averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modeling. In this work, we examine the performance of the tilted-ring method and the DiskFit algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under/over-estimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DiskFit, which does include streaming motions, is limited to orientations where the bar is not-aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.
Boxy, peanut- or X-shaped bulges are observed in a large fraction of barred galaxies viewed in, or close to, edge-on projection, as well as in the Milky Way. They are the product of dynamical instabilities occurring in stellar bars, which cause the latter to buckle and thicken vertically. Recent studies have found nearby galaxies that harbour two such features arising at different radial scales, in a nested configuration. In this paper we explore the formation of such double peanuts, using a collisionless N-body simulation of a pure disc evolving in isolation within a live dark matter halo, which we analyse in a completely analogous way to observations of real galaxies. In the simulation we find a stable double configuration consisting of two X/peanut structures associated to the same galactic bar - rotating with the same pattern speed - but with different morphology, formation time, and evolution. The inner, conventional peanut-shaped structure forms early via the buckling of the bar, and experiences little evolution once it stabilises. This feature is consistent in terms of size, strength and morphology, with peanut structures observed in nearby galaxies. The outer structure, however, displays a strong X, or bow-tie, morphology. It forms just after the inner peanut, and gradually extends in time (within 1 to 1.5 Gyr) to almost the end of the bar, a radial scale where ansae occur. We conclude that, although both structures form, and are dynamically coupled to, the same bar, they are supported by inherently different mechanisms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا