No Arabic abstract
For a compact Lie group G we define a regularized version of the Dolbeault cohomology of a G-equivariant holomorphic vector bundles over non-compact Kahler manifolds. The new cohomology is infinite-dimensional, but as a representation of G it decomposes into a sum of irreducible components, each of which appears in it with finite multiplicity. Thus equivariant Betti numbers are well defined. We study various properties of the new cohomology and prove that it satisfies a Kodaira-type vanishing theorem.
In this paper, we consider a natural map from the Kahler cone to the balanced cone of a Kahler manifold. We study its injectivity and surjecticity. We also give an analytic characterization theorem on a nef class being Kahler.
A special Kahler-Ricci potential on a Kahler manifold is any nonconstant $C^infty$ function $tau$ such that $J( ablatau)$ is a Killing vector field and, at every point with $dtau e 0$, all nonzero tangent vectors orthogonal to $ ablatau$ and $J( ablatau)$ are eigenvectors of both $ abla dtau$ and the Ricci tensor. For instance, this is always the case if $tau$ is a nonconstant $C^infty$ function on a Kahler manifold $(M,g)$ of complex dimension $m>2$ and the metric $tilde g=g/tau^2$, defined wherever $tau e 0$, is Einstein. (When such $tau$ exists, $(M,g)$ may be called {it almost-everywhere conformally Einstein}.) We provide a complete classification of compact Kahler manifolds with special Kahler-Ricci potentials and use it to prove a structure theorem for compact Kahler manifolds of any complex dimension $m>2$ which are almost-everywhere conformally Einstein.
We study the (standard) cohomology $H^bullet_{st}(E)$ of a Courant algebroid $E$. We prove that if $E$ is transitive, the standard cohomology coincides with the naive cohomology $H_{naive}^bullet(E)$ as conjectured by Stienon and Xu. For a general Courant algebroid we define a spectral sequence converging to its standard cohomology. If $E$ is with split base, we prove that there exists a natural transgression homomorphism $T_3$ (with image in $H^3_{naive}(E)$) which, together with the naive cohomology, gives all $H^bullet_{st}(E)$. For generalized exact Courant algebroids, we give an explicit formula for $T_3$ depending only on the v{S}evera characteristic clas of $E$.
We show that, on a complete and possibly non-compact Riemannian manifold of dimension at least 2 without close conjugate points at infinity, the existence of a closed geodesic with local homology in maximal degree and maximal index growth under iteration forces the existence of infinitely many closed geodesics. For closed manifolds, this was a theorem due to Hingston.
Let $A Rightarrow M$ be a Lie algebroid. In this short note, we prove that a pull-back of $A$ along a fibration with homologically $k$-connected fibers, shares the same deformation cohomology of $A$ up to degree $k$.