Do you want to publish a course? Click here

Deformation Cohomology of Lie Algebroids and Morita Equivalence

89   0   0.0 ( 0 )
 Added by Luca Vitagliano
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $A Rightarrow M$ be a Lie algebroid. In this short note, we prove that a pull-back of $A$ along a fibration with homologically $k$-connected fibers, shares the same deformation cohomology of $A$ up to degree $k$.



rate research

Read More

We study the (standard) cohomology $H^bullet_{st}(E)$ of a Courant algebroid $E$. We prove that if $E$ is transitive, the standard cohomology coincides with the naive cohomology $H_{naive}^bullet(E)$ as conjectured by Stienon and Xu. For a general Courant algebroid we define a spectral sequence converging to its standard cohomology. If $E$ is with split base, we prove that there exists a natural transgression homomorphism $T_3$ (with image in $H^3_{naive}(E)$) which, together with the naive cohomology, gives all $H^bullet_{st}(E)$. For generalized exact Courant algebroids, we give an explicit formula for $T_3$ depending only on the v{S}evera characteristic clas of $E$.
VB-groupoids and algebroids are vector bundle objects in the categories of Lie groupoids and Lie algebroids respectively, and they are related via the Lie functor. VB-groupoids and algebroids play a prominent role in Poisson and related geometries. Additionally, they can be seen as models for vector bundles over singular spaces. In this paper we study their infinitesimal automorphisms, i.e. vector fields on them generating a flow by diffeomorphisms preserving both the linear and the groupoid/algebroid structures. For a special class of VB-groupoids/algebroids coming from representations of Lie groupoids/algebroids, we prove that infinitesimal automorphisms are the same as multiplicative sections of a certain derivation groupoid/algebroid.
We propose a definition of a higher version of the omni-Lie algebroid and study its isotropic and involutive subbundles. Our higher omni-Lie algebroid is to (multi)contact and related geometries what the higher generalized tangent bundle of Zambon and Bi/Sheng is to (multi)symplectic and related geometries.
We show how one can associate to a given class of finite type G-structures a classifying Lie algebroid. The corresponding Lie groupoid gives models for the different geometries that one can find in the class, and encodes also the different types of symmetry groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا