No Arabic abstract
A serious concern for semi-analytical galaxy formation models, aiming to simulate multi-wavelength surveys and to thoroughly explore the model parameter space, is the extremely time consuming numerical solution of the radiative transfer of stellar radiation through dusty media. To overcome this problem, we have implemented an artificial neural network algorithm in the radiative transfer code GRASIL, in order to significantly speed up the computation of the infrared SED. The ANN we have implemented is of general use, in that its input neurons are defined as those quantities effectively determining the shape of the IR SED. Therefore, the training of the ANN can be performed with any model and then applied to other models. We made a blind test to check the algorithm, by applying a net trained with a standard chemical evolution model (i.e. CHE_EVO) to a mock catalogue extracted from the SAM MORGANA, and compared galaxy counts and evolution of the luminosity functions in several near-IR to sub-mm bands, and also the spectral differences for a large subset of randomly extracted models. The ANN is able to excellently approximate the full computation, but with a gain in CPU time by $sim 2$ orders of magnitude. It is only advisable that the training covers reasonably well the range of values of the input neurons in the application. Indeed in the sub-mm at high redshift, a tiny fraction of models with some sensible input neurons out of the range of the trained net cause wrong answer by the ANN. These are extreme starbursting models with high optical depths, favorably selected by sub-mm observations, and difficult to predict a priori.
We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar HII and HeII morphologies and power spectra of the HI 21cm signal throughout reionization. As we do not track partial ionization of HeII, the extent of the double ionized helium (HeIII) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.
We present an updated model for the evolution of the orbits of orphan galaxies to be used in the SAG semi-analytical model of galaxy formation and evolution. In cosmological simulations, orphan galaxies are those satellite galaxies for which, due to limited mass resolution, halo finders lose track of their dark matter subhalos and can no longer be distinguished as self-bound overdensities within the larger host system. Since the evolution of orphans depends strongly on the orbit they describe within their host halo, a proper treatment of their evolution is crucial in predicting the distribution of subhalos and satellite galaxies. The model proposed takes into account the dynamical friction drag, mass loss by tidal stripping and a proximity merger criterion, also it is simple enough to be inexpensive from a computational point of view. To calibrate this model, we apply it onto a dark matter only simulation and compare the results with a high resolution simulation, considering the halo mass function and the two-point correlation function as constraints. We show that while the halo mass function fails to put tight constraints on the dynamical friction, the addition of clustering information helps to better define the parameters of the model related to the spatial distribution of subhalos. Using the model with the best fit parameters allows us to reproduce the halo mass function to a precision better than 5 per cent, and the two point correlation function at a precision better than 10 per cent.
We investigate the properties of damped Ly{alpha} absorption systems (DLAs) in semi-analytic models of galaxy formation, including partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases with a molecular gas-based star formation recipe. We investigate two approaches for partitioning gas into these constituents: a pressure-based and a metallicity-based recipe. We identify DLAs by passing lines of sight through our simulations to compute HI column densities. We find that models with standard gas radial profiles - where the average specific angular momentum of the gas disc is equal to that of the host dark matter halo - fail to reproduce the observed column density distribution of DLAs. These models also fail to reproduce the distribution of velocity widths {Delta}v, overproducing low {Delta}v relative to high {Delta}v systems. Models with extended radial gas profiles - corresponding to gas discs with higher specific angular momentum - are able to reproduce quite well the column density distribution of absorbers over the column density range 19 < log NHI < 22.5 in the redshift range 2 < z < 3.5. The model with pressure-based gas partitioning also reproduces the observed line density of DLAs, HI gas density, and {Delta}v distribution at z < 3 remarkably well. However all of the models investigated here underproduce DLAs and the HI gas density at z > 3. If this is the case, the flatness in the number of DLAs and HI gas density over the redshift interval 0 < z < 5 may be due to a cosmic coincidence where the majority of DLAs at z > 3 arise from intergalactic gas in filaments while those at z < 3 arise predominantly in galactic discs. We further investigate the dependence of DLA metallicity on redshift and {Delta}v, and find reasonably good agreement with the observations, particularly when including the effects of metallicity gradients (abbrv.).
We describe Rabacus, a Python package for calculating the transfer of hydrogen ionizing radiation in simplified geometries relevant to astronomy and cosmology. We present example solutions for three specific cases: 1) a semi-infinite slab gas distribution in a homogeneous isotropic background, 2) a spherically symmetric gas distribution with a point source at the center, and 3) a spherically symmetric gas distribution in a homogeneous isotropic background. All problems can accommodate arbitrary spectra and density profiles as input. The solutions include a treatment of both hydrogen and helium, a self-consistent calculation of equilibrium temperatures, and the transfer of recombination radiation. The core routines are written in Fortran 90 and then wrapped in Python leading to execution speeds thousands of times faster than equivalent routines written in pure Python. In addition, all variables have associated units for ease of analysis. The software is part of the Python Package Index and the source code is available on Bitbucket at https://bitbucket.org/galtay/rabacus . In addition, installation instructions and a detailed users guide are available at http://pythonhosted.org//rabacus .
The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, $L_6$, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than $2times10^{12}M_{odot}$ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of $L_6$ for $M_sle 8$~keV. We also show that the range of $L_6$ that is in best agreement with the 3.5~keV line (if produced by decays of 7~keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than $1.5times10^{12}M_{odot}$. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel~et~al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.