No Arabic abstract
We report the detection of strong, resolved emission from warm H2 in the Taffy galaxies and bridge. Relative to the continuum and faint PAH emission, the H2 emission is the strongest in the connecting bridge, approaching L(H2)/L(PAH8{mu}m) = 0.1 between the two galaxies, where the purely rotational lines of H2 dominate the mid-infrared spectrum in a way very reminiscent of the group-wide shock in the interacting group Stephans Quintet. The surface brightness in the 0-0 S(0) and S(1) H2 lines in the bridge is more than twice that observed at the center of the Stephans Quintet shock. We observe a warm H2 mass of 4.2 times 108 Modot in the bridge, but taking into account the unobserved bridge area, the total warm mass is likely to be twice this value. We use excitation diagrams to characterize the warm molecular gas, finding an average surface mass of 5 times 106 Modot kpc-2 and typical excitation temperatures of 150-175 K. H2 emission is also seen in the galaxy disks, although there the emission is more consistent with normal star forming galaxies. We investigate several possible heating mechanisms for the bridge gas, but favor the conversion of kinetic energy from the head-on collision via turbulence and shocks as the main heating source. Since the cooling time for the warm H2 is short (5000 yr), shocks must be permeating the molecular gas in bridge region in order to continue heating the H2.
Using the PACS and SPIRE spectrometers on-board Herschel, we obtained observations of the Taffy galaxies (UGC 12914/12915) and bridge. The Taffy system is believed to be the result of a face-on collision between two gas-rich galaxies, in which the stellar disks passed through each other, but the gas was dispersed into a massive H I and molecular bridge between them. Emission is detected and mapped in both galaxies and the bridge in the [C II]157.7 $mu$m and [O I]63.2 $mu$m fine-structure lines. Additionally, SPIRE FTS spectroscopy detects the [C I] $^3$P$_2$$rightarrow$$^3$P$_1$(809.3 GHz) and [C I] $^3$P$_1$$rightarrow$$3$P$_0$(492.2 GHz) neutral carbon lines, and weakly detects high-J CO transitions in the bridge. These results indicate that the bridge is composed of a warm multi-phase medium consistent with shock and turbulent heating. Despite low star formation rates in the bridge, the [C II] emission appears to be enhanced, reaching [C II]/FIR ratios of 3.3% in parts of the bridge. Both the [C II] and [O I] lines show broad intrinsic multi-component profiles, similar to those seen in previous CO 1-0 and H I observations. The [C II] emission shares similar line profiles with both the double-peaked H I profiles and shares a high-velocity component with single-peaked CO profiles in the bridge, suggesting that the [C II] emission originates in both the neutral and molecular phases. We show that it is feasible that a combination of turbulently heated H$_2$ and high column-density H I, resulting from the galaxy collision, is responsible for the enhanced [C II] emission.
We describe the TEXES survey for mid-IR H2 pure rotational emission from young stars and report early successes. H2 emission is a potential tracer of warm gas in circumstellar disks. Three pure rotational lines are available from the ground: the J=3=>1, J=4=>2, and J=6=>4, transitions at 17.035 microns, 12.279 microns, and 8.025 microns, respectively. Using TEXES at the NASA IRTF 3m, we are midway through a survey of roughly 30 pre-main-sequence stars. To date, detected lines are all resolved, generally with FWHM<10 km/s. Preliminary analysis suggests the gas temperatures are between 400 and 800 K. From the work so far, we conclude that high spectral and spatial resolution are critical to the investigation of H2 in disks.
We determine the contribution of AGN to the mid-IR emission of luminous infrared galaxies (LIRGs) at z>0.6 by measuring the mid-IR dust continuum slope of 20,039 mid-IR sources. The 24 micron sources are selected from a Spitzer/MIPS survey of the NOAO Deep Wide-Field Survey Bootes field and have corresponding 8 micron data from the IRAC Shallow Survey. There is a clear bimodal distribution in the 24 micron to 8 micron flux ratio. The X-ray detected sources fall within the peak corresponding to a flat spectrum in nufnu, implying that it is populated by AGN-dominated LIRGs, whereas the peak corresponding to a higher 24 micron to 8 micron flux ratio is likely due to LIRGs whose infrared emission is powered by starbursts. The 24 micron emission is increasingly dominated by AGN at higher 24 micron flux densities (f_24): the AGN fraction of the z>0.6 sources increases from ~9% at f_24 ~ 0.35 mJy to 74+/-20% at f_24 ~ 3 mJy in good agreement with model predictions. Deep 24 micron, small area surveys, like GOODS, will be strongly dominated by starburst galaxies. AGN are responsible for ~ 3-7% of the total 24 micron background.
The spectacular head-on collision of the two gas-rich galaxies of the Taffy system, UGC 12914/15, gives us a unique opportunity to study the consequences of a direct ISM-ISM collision. To interpret existing multi-wavelength observations, we made dynamical simulations of the Taffy system including a sticky particle component. To compare simulation snapshots to HI and CO observations, we assume that the molecular fraction of the gas depends on the square root of the gas volume density. For the comparison of our simulations with observations of polarized radio continuum emission, we calculated the evolution of the 3D large-scale magnetic field for our simulations. The induction equations including the time-dependent gas-velocity fields from the dynamical model were solved for this purpose. Our simulations reproduce the stellar distribution of the primary galaxy, UGC 12914, the prominent HI and CO gas bridge, the offset between the CO and HI emission in the bridge, the bridge isovelocity vectors parallel to the bridge, the HI double-line profiles in the bridge region, the large line-widths (~200 km/s) in the bridge region, the high field strength of the bridge large-scale regular magnetic field, the projected magnetic field vectors parallel to the bridge and the strong total power radio continuum emission from the bridge. The stellar distribution of the secondary model galaxy is more perturbed than observed. The observed distortion of the HI envelope of the Taffy system is not reproduced by our simulations which use initially symmetric gas disks. The model allows us to define the bridge region in three dimensions. We estimate the total bridge gas mass (HI, warm and cold H2) to be 5 to 6 10^9 M_sun, with a molecular fraction M_H2/M_HI of about unity (abrigded).
We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Each galaxy was separated into regions of increasingly red near-infrared colors. In the absence of dust extinction and other non-stellar emission, stellar populations are shown to have relatively constant NIR colors, independent of age. In regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25, 3.6, 4.5, 5.6, 8.0 and 24 micron) scales linearly with the intrinsic intensity of Halpha emission, and thus with the star-formation rate within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star-formation. This is surprising because the shorter wavelength bands in our study (1.25 micron-5.6 micron) do not probe emission from cold (10-20 K) and warm (50-100 K) dust associated with star-formation in molecular clouds. However, emission from hot dust (700-1000 K) and/or Polycyclic Aromatic Hydrocarbon molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2-5micron and PAH emission at 5.6 and 8.0 micron scales linearly with warm dust emission at 24 micron and the intrinsic Halpha emission. Since both are tied to the star-formation rate, our analysis shows that the NIR excess continuum emission and PAH emission at ~1-8 micron can be added to spectral energy distribution models in a very straight-forward way, by simply adding an additional component to the models that scales linearly with star-formation rate.