Do you want to publish a course? Click here

Nature of yrast excitations near N=40: Level structure of Ni-67

136   0   0.0 ( 0 )
 Added by Shaofei Zhu
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Excited states in Ni-67 were populated in deep-inelastic reactions of a Ni-64 beam at 430 MeV on a thick U-238 target. A level scheme built on the previously known 13 micro-s isomer has been delineated up to an excitation energy of ~5.3 MeV and a tentative spin and parity of (21/2-). Shell model calculations have been carried out using two effective interactions in the f5/2pg9/2 model space with a Ni-56 core. Satisfactory agreement between experiment and theory is achieved for the measured transition energies and branching ratios. The calculations indicate that the yrast states are associated with rather complex configurations, herewith demonstrating the relative weakness of the N=40 subshell gap and the importance of multi particle-hole excitations involving the g9/2 neutron orbital.

rate research

Read More

Excited states in the neutron-rich N=38,36 nuclei uc{60}{Ti} and uc{58}{Ti} were populated in nucleon-removal reactions from uc{61}{V} projectiles at 90~MeV/nucleon. The gamma-ray transitions from such states in these Ti isotopes were detected with the advanced gamma-ray tracking array GRETINA and were corrected event-by-event for large Doppler shifts (v/c sim 0.4) using the gamma-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N=36,38 Fe and Cr toward the Ti and Ca isotones. In fact, uc{58,60}{Ti} provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly-magic nucleus uc{60}{Ca}.
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 , ^3P_1 rightarrow 4s^2 4p 5s , ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{rm s}$ = $-$0.198(4) b, in excellent agreement with the literature value from molecular calculations. The moments of $^{69}$Ge have been revised: $mu$ = +0.920(5) $mu_{N}$ and $Q_{rm s}$= +0.114(8) b, and those of $^{71}$Ge have been confirmed. The experimental moments around $N = 40$ are interpreted with large-scale shell-model calculations using the JUN45 interaction, revealing rather mixed wave function configurations, although their $g$-factors are lying close to the effective single-particle values. Through a comparison with neighboring isotones, the structural change from the single-particle nature of nickel to deformation in germanium is further investigated around $N = 40$.
Excited states in the $N=40$ isotone $^{62}$Ti were populated via the $^{63}$V$(p,2p)$$^{62}$Ti reaction at $sim$200~MeV/u at the Radioactive Isotope Beam Factory and studied using $gamma$-ray spectroscopy. The energies of the $2^+_1 rightarrow 0^{+}_{mathrm{gs}}$ and $4^+_1 rightarrow 2^+_1$ transitions, observed here for the first time, indicate a deformed $^{62}$Ti ground state. These energies are increased compared to the neighboring $^{64}$Cr and $^{66}$Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings. The shell-model calculations for $^{62}$Ti show a dominant configuration with four neutrons excited across the $N=40$ gap. Likewise, they indicate that the $N=40$ island of inversion extends down to $Z=20$, disfavoring a possible doubly magic character of the elusive $^{60}$Ca.
91 - X. Liu , B. Cederwall , C. Qi 2021
The low-lying excited states in the neutron-deficient $N=Z+1$ nucleus $^{87}_{43}$Tc$^{ }_{44}$ have been studied via the fusion-evaporation reaction $^{54}$Fe($^{36}$Ar, $2n1p$)$^{87}$Tc at the Grand Accelerateur National dIons Lourds (GANIL), France. The AGATA spectrometer was used in conjunction with the auxiliary NEDA, Neutron Wall, and DIAMANT detector arrays to measure coincident prompt $gamma$-rays, neutrons, and charged particles emitted in the reaction. A level scheme of $^{87}$Tc from the (9/2$^{+}_{g.s.}$) state to the (33/2$^{+}_{1}$) state was established based on 6 mutually coincident $gamma$-ray transitions. The constructed level structure exhibits a rotational behavior with a sharp backbending at $hbaromegaapprox 0.50$ MeV. A decrease in alignment frequency and increase in alignment sharpness in the odd-mass isotonic chains around $N=44$ is proposed as an effect of the enhanced isoscalar neutron-proton interactions in odd-mass nuclei when approaching the $N=Z$ line.
99 - W.Rother , A.Dewald , H.Iwasaki 2010
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا