Do you want to publish a course? Click here

Molecules in Bipolar Outflows

102   0   0.0 ( 0 )
 Added by Mario Tafalla
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bipolar outflows constitute some of the best laboratories to study shock chemistry in the interstellar medium. A number of molecular species have their abundance enhanced by several orders of magnitude in the outflow gas, likely as a combined result of dust mantle disruption and high temperature gas chemistry, and therefore become sensitive indicators of the physical changes taking place in the shock. Identifying these species and understanding their chemical behavior is therefore of high interest both to chemical studies and to our understanding of the star-formation process. Here we review some of the recent progress in the study of the molecular composition of bipolar outflows, with emphasis in the tracers most relevant for shock chemistry. As we discuss, there has been rapid progress both in characterizing the molecular composition of certain outflows as well as in modeling the chemical processes likely involved. However, a number of limitations still affect our understanding of outflow chemistry. These include a very limited statistical approach in the observations and a dependence of the models on plane-parallel shocks, which cannot reproduce the observed wing morphology of the lines. We finish our contribution by discussing the chemistry of the so-called extremely high velocity component, which seems different from the rest of the outflow and may originate in the wind from the very vicinity of the protostar.

rate research

Read More

We model molecular outflows produced by the time dependent interaction between a stellar wind and a rotating cloud envelope in gravitational collapse, studied by Ulrich. We consider spherical and anisotropic stellar winds. We assume that the bipolar outflow is a thin shocked shell, with axial symmetry around the cloud rotation axis and obtain the mass and momentum fluxes into the shell. We solve numerically a set of partial differential equations in space and time, and obtain the shape of the shell, the mass surface density, the velocity field, and the angular momentum of the material in the shell. We find that there is a critical value of the ratio between the wind and the accretion flow momentum rates $beta$ that allows the shell to expand. As expected, the elongation of the shells increase with the stellar wind anisotropy. In our models, the rotation velocity of the shell is the order to 0.1 - 0.2 km s$^{-1}$, a factor of 5-10 lower than the values measured in several sources. We compare our models with those of Wilkin and Stahler for early evolutionary times and find that our shells have the same sizes at the pole, although we use different boundary conditions at the equator.
459 - M. Tafalla , R. Liseau , B. Nisini 2013
(Abridged) We present a survey of the water emission in a sample of more than 20 outflows from low mass young stellar objects with the goal of characterizing the physical and chemical conditions of the emitting gas. We have used the HIFI and PACS instruments on board the Herschel Space Observatory to observe the two fundamental lines of ortho-water at 557 and 1670 GHz. These observations were part of the Water In Star-forming regions with Herschel (WISH) key program, and have been complemented with CO and H2 data. We find that the emission from water has a different spatial and velocity distribution from that of the J=1-0 and 2-1 transitions of CO, but it has a similar spatial distribution to H2, and its intensity follows the H2 intensity derived from IRAC images. This suggests that water traces the outflow gas at hundreds of kelvins responsible for the H2 emission, and not the component at tens of kelvins typical of low-J CO emission. A warm origin of the water emission is confirmed by a remarkable correlation between the intensities of the 557 and 1670 GHz lines, which also indicates the emitting gas has a narrow range of excitations. A non-LTE radiative transfer analysis shows that while there is some ambiguity on the exact combination of density and temperature values, the gas thermal pressure nT is constrained within less than a factor of 2. The typical nT over the sample is 4 10^{9} cm^{-3}K, which represents an increase of 10^4 with respect to the ambient value. The data also constrain within a factor of 2 the water column density. When this quantity is combined with H2 column densities, the typical water abundance is only 3 10^{-7}, with an uncertainty of a factor of 3. Our data challenge current C-shock models of water production due to a combination of wing-line profiles, high gas compressions, and low abundances.
51 - J.M.C Rawlings 2004
A plausible model is proposed for the enhancement of the abundance of molecular species in bipolar outflow sources. In this model, levels of HCO+ enhancement are considered based on previous chemical calculations, that are assumed to result from shock-induced desorption and photoprocessing of dust grain ice mantles in the boundary layer between the outflow jet and the surrounding envelope. A radiative transfer simulation that incorporates chemical variations within the flow shows that the proposed abundance enhancements in the boundary layer are capable of reproducing the observed characteristics of the outflow seen in HCO+ emission in the star forming core L1527. The radiative transfer simulation also shows that the emission lines from the enhanced molecular species that trace the boundary layer of the outflow exhibit complex line profiles indicating that detailed spatial maps of the line profiles are essential in any attempt to identify the kinematics of potential infall/outflow sources. This study is one of the first applications of a full three dimensional radiative transfer code which incorporates chemical variations within the source.
We report ALMA and SMA observations of the luminous infrared merger NGC 3256, the most luminous galaxy within z=0.01. Both of the two merger nuclei separated by 5 (0.8 kpc) on the sky have a compact concentration of molecular gas, i.e., nuclear disks with Sigma_mol > 10^3 Msun pc^-2. The one at the northern nucleus is face-on while the southern nuclear disk is almost edge-on. The northern nucleus is more massive and has molecular arcs and spiral arms around. The high-velocity molecular gas previously found in the system is resolved to two molecular outflows associated with each of the two nuclei. The molecular outflow from the northern nuclear disk is part of a starburst-driven superwind seen nearly pole on. Its maximum velocity is >750 km/s and its mass outflow rate is estimated to be > 60 Msun/yr for a conversion factor N_{H_2}/I_{CO(1-0)}=1x10^20 cm^-2/(K km/s). The outflow from the southern nucleus is a highly collimated bipolar molecular jet seen nearly edge-on. Its line-of-sight velocity increases with distance out to 300 pc from the southern nucleus. Its maximum de-projected velocity is ~2000 km/s for the estimated inclination and should exceed 1000 km/s even allowing for its uncertainty. The mass outflow rate is estimated to be >50 Msun/yr for this outflow. There are possible signs that this southern outflow has been driven by a bipolar radio jet from an AGN that became inactive very recently. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate in NGC 3256. The feedback from nuclear activities in the form of molecular outflows is therefore significant in the gas consumption budget, and hence evolution, of this luminous infrared galaxy. (abridged)
We report the discovery of 11 bipolar outflows within a projected distance of 1pc from Sgr A* based on deep ALMA observations of $^{13}$CO, H30$alpha$ and SiO (5-4) lines with sub-arcsecond and $sim1.3$ km/s, resolutions. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of stars. The lobe masses and momentum transfer rates are consistent with young protostellar outflows found throughout the disk of the Galaxy. The mean dynamical age of the outflow population is estimated to be $6.5^{+8.1}_{-3.6}times10^3$ years. The rate of star formation is $sim5times10^{-4}$msol,yr$^{-1}$ assuming a mean stellar mass of $sim0.3$ msol. This discovery provides evidence that star formation is taking place within clouds surprisingly close to Sgr A*, perhaps due to events that compress the host cloud, creating condensations with sufficient self-gravity to resist tidal disruption by Sgr A*. Low-mass star formation over the past few billion years at this level would contribute significantly to the stellar mass budget in the central few pc of the Galaxy. The presence of many dense clumps of molecular material within 1pc of Sgr A* suggests that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا