Do you want to publish a course? Click here

A Luminous Infrared Merger with Two Bipolar Molecular Outflows: ALMA and SMA Observations of NGC 3256

152   0   0.0 ( 0 )
 Added by Kazushi Sakamoto
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report ALMA and SMA observations of the luminous infrared merger NGC 3256, the most luminous galaxy within z=0.01. Both of the two merger nuclei separated by 5 (0.8 kpc) on the sky have a compact concentration of molecular gas, i.e., nuclear disks with Sigma_mol > 10^3 Msun pc^-2. The one at the northern nucleus is face-on while the southern nuclear disk is almost edge-on. The northern nucleus is more massive and has molecular arcs and spiral arms around. The high-velocity molecular gas previously found in the system is resolved to two molecular outflows associated with each of the two nuclei. The molecular outflow from the northern nuclear disk is part of a starburst-driven superwind seen nearly pole on. Its maximum velocity is >750 km/s and its mass outflow rate is estimated to be > 60 Msun/yr for a conversion factor N_{H_2}/I_{CO(1-0)}=1x10^20 cm^-2/(K km/s). The outflow from the southern nucleus is a highly collimated bipolar molecular jet seen nearly edge-on. Its line-of-sight velocity increases with distance out to 300 pc from the southern nucleus. Its maximum de-projected velocity is ~2000 km/s for the estimated inclination and should exceed 1000 km/s even allowing for its uncertainty. The mass outflow rate is estimated to be >50 Msun/yr for this outflow. There are possible signs that this southern outflow has been driven by a bipolar radio jet from an AGN that became inactive very recently. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate in NGC 3256. The feedback from nuclear activities in the form of molecular outflows is therefore significant in the gas consumption budget, and hence evolution, of this luminous infrared galaxy. (abridged)



rate research

Read More

In external galaxies, molecular composition may be influenced by extreme environments such as starbursts and galaxy mergers. To study such molecular chemistry, we observed the luminous-infrared galaxy and merger NGC 3256 using the Atacama Large Millimeter/sub-millimeter Array. We covered most of the 3-mm and 1.3-mm bands for a multi-species, multi-transition analysis. We first analyzed intensity ratio maps of selected lines such as HCN/HCO$^+$, which shows no enhancement at an AGN. We then compared the chemical compositions within NGC 3256 at the two nuclei, tidal arms, and positions with influence from galactic outflows. We found the largest variation in SiO and CH$_3$OH, species that are likely to be enhanced by shocks. Next, we compared the chemical compositions in the nuclei of NGC 3256, NGC 253, and Arp 220; these galactic nuclei have varying star formation efficiencies. Arp 220 shows higher abundances of SiO and HC$_3$N than NGC 3256 and NGC 253. Abundances of most species do not show strong correlation with the star formation efficiencies, although the CH$_3$CCH abundance seems to have a weak positive correlation with the star formation efficiency. Lastly, the chemistry of spiral arm positions in NGC 3256 is compared with that of W 51, a Galactic molecular cloud complex in a spiral arm. We found higher fractional abundances of shock tracers, and possibly also higher dense gas fraction in NGC 3256 compared with W 51.
We report ~2 resolution Atacama Large Millimeter/submillimeter Array observations of the HCN(1-0), HCO+(1-0), CO(1-0), CO(2-1), and CO(3-2) lines towards the nearby merging double-nucleus galaxy NGC 3256. We find that the high density gas outflow traced in HCN(1-0) and HCO+(1-0) emission is co-located with the diffuse molecular outflow emanating from the southern nucleus, where a low-luminosity active galactic nucleus (AGN) is believed to be the dominant source of the far-infrared luminosity. On the other hand, the same lines were undetected in the outflow region associated with the northern nucleus, whose primary heating source is likely related to starburst activity without obvious signs of AGN. Both HCO+(1-0)/CO(1-0) line ratio (i.e. dense gas fraction) and the CO(3-2)/CO(1-0) line ratio are larger in the southern outflow (0.20$pm$0.04 and 1.3$pm$0.2, respectively) than in the southern nucleus (0.08$pm$0.01, 0.7$pm$0.1, respectively). By investigating these line ratios for each velocity component in the southern outflow, we find that the dense gas fraction increases and the CO(3-2)/CO(1-0) line ratio decreases towards the largest velocity offset. This suggests the existence of a two-phase (diffuse and clumpy) outflow. One possible scenario to produce such a two-phase outflow is an interaction between the jet and the interstellar medium, which possibly triggers shocks and/or star formation associated with the outflow.
We present high-resolution (1.0) Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO (1-0) and CO (2- 1) rotational transitions toward the nearby IR-luminous merger NGC 1614 supplemented with ALMA archival data of CO (3-2), and CO (6-5) transitions. The CO (6-5) emission arises from the starburst ring (central 590 pc in radius), while the lower-$J$ CO lines are distributed over the outer disk ($sim$ 3.3 kpc in radius). Radiative transfer and photon dominated region (PDR) modeling reveal that the starburst ring has a single warmer gas component with more intense far-ultraviolet radiation field ($n_{rm{H_2}}$ $sim$ 10$^{4.6}$ cm$^{-3}$, $T_{rm{kin}}$ $sim$ 42 K, and $G_{rm{0}}$ $sim$ 10$^{2.7}$) relative to the outer disk ($n_{rm{H_2}}$ $sim$ 10$^{5.1}$ cm$^{-3}$, $T_{rm{kin}}$ $sim$ 22 K, and $G_{rm{0}}$ $sim$ 10$^{0.9}$). A two-phase molecular interstellar medium with a warm and cold ($>$ 70 K and $sim$ 19 K) component is also an applicable model for the starburst ring. A possible source for heating the warm gas component is mechanical heating due to stellar feedback rather than PDR. Furthermore, we find evidence for non-circular motions along the north-south optical bar in the lower-$J$ CO images, suggesting a cold gas inflow. We suggest that star formation in the starburst ring is sustained by the bar-driven cold gas inflow, and starburst activities radiatively and mechanically power the CO excitation. The absence of a bright active galactic nucleus can be explained by a scenario that cold gas accumulating on the starburst ring is exhausted as the fuel for star formation, or is launched as an outflow before being able to feed to the nucleus.
82 - T. Saito , D. Iono , J. Ueda 2017
We present 0.97 $times$ 0.53 (470 pc $times$ 250 pc) resolution CO ($J$ = 2-1) observations toward the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes ($sim$11 kpc). We found that the CO emission around the central a few kpc has extremely broad velocity wings with full width at zero intensity $sim$ 2000 km s$^{-1}$, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO datacube. The distribution of the broad CO components show four extremely large linewidth regions ($sim$1000 km s$^{-1}$) located 1-2 kpc away from both nuclei. Spatial coincidence of the large linewidth regions with H$alpha$, near-IR H$_2$, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.
91 - L. P. Jenkins 2004
We present XMM-Newton EPIC observations of the two nearby starburst merger galaxies NGC 3256 & NGC 3310. The broad-band (0.3-10 keV) integrated X-ray emission from both galaxies shows evidence of multi-phase thermal plasmas plus an underlying hard non-thermal power-law continuum. NGC 3256 is well-fit with a model comprising two MEKAL components (kT=0.6/0.9 keV) plus a hard power-law (Gamma=2), while NGC 3310 has cooler MEKAL components (kT=0.3/0.6 keV) and a harder power-law tail (Gamma=1.8). Chandra observations of these galaxies both reveal the presence of numerous discrete sources embedded in the diffuse emission, which dominate the emission above ~2 keV and are likely to be the source of the power-law emission. The thermal components show a trend of increasing absorption with higher temperature, suggesting that the hottest plasmas arise from supernova-heated gas within the disks of the galaxies, while the cooler components arise from outflowing galactic winds interacting with the ambient interstellar medium (ISM). We find no strong evidence for an active galactic nucleus (AGN) in either galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا