Do you want to publish a course? Click here

Fractional quantum Hall states in two-dimensional electron systems with anisotropic interactions

191   0   0.0 ( 0 )
 Added by Hao Wang
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the anisotropic effect of the Coulomb interaction on a 1/3-filling fractional quantum Hall system by using an exact diagonalization method on small systems in torus geometry. For weak anisotropy the system remains to be an incompressible quantum liquid, although anisotropy manifests itself in density correlation functions and excitation spectra. When the strength of anisotropy increases, we find the system develops a Hall-smectic-like phase with a one-dimensional charge density wave order and is unstable towards the one-dimensional crystal in the strong anisotropy limit. In all three phases of the Laughlin liquid, Hall-smectic-like, and crystal phases the ground state of the anisotropic Coulomb system can be well described by a family of model wave functions generated by an anisotropic projection Hamiltonian. We discuss the relevance of the results to the geometrical description of fractional quantum Hall states proposed by Haldane [ Phys. Rev. Lett. 107 116801 (2011)].



rate research

Read More

475 - Medini Padmanabhan , T. Gokmen , 2010
We study a two-dimensional electron system where the electrons occupy two conduction band valleys with anisotropic Fermi contours and strain-tunable occupation. We observe persistent quantum Hall states at filling factors $ u = 1/3$ and 5/3 even at zero strain when the two valleys are degenerate. This is reminiscent of the quantum Hall ferromagnet formed at $ u = 1$ in the same system at zero strain. In the absence of a theory for a system with anisotropic valleys, we compare the energy gaps measured at $ u = 1/3$ and 5/3 to the available theory developed for single-valley, two-spin systems, and find that the gaps and their rates of rise with strain are much smaller than predicted.
Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeric results of these anisotropic quantum Hall states are also presented.
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fraction $ u=5/2$. We analyse the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the $Nge2$ third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These stripe phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.
We study transport properties of a charge qubit coupling two chiral Luttinger liquids, realized by two antidots placed between the edges of an integer $ u=1$ or fractional $ u=1/3$ quantum Hall bar. We show that in the limit of a large capacitive coupling between the antidots, their quasiparticle occupancy behaves as a pseudo-spin corresponding to an orbital Kondo impurity coupled to a chiral Luttinger liquid, while the inter antidot tunnelling acts as an impurity magnetic field. The latter tends to destabilize the Kondo fixed point for the $ u=1/3$ fractional Hall state, producing an effective inter-edge tunnelling. We relate the inter-edge conductance to the susceptibility of the Kondo impurity and calculate it analytically in various limits for both $ u=1$ and $ u=1/3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا