Do you want to publish a course? Click here

A 95 GHz Class I Methanol Maser Survey Toward A Sample of GLIMPSE Point Sources Associated with BGPS Clumps

193   0   0.0 ( 0 )
 Added by Xi Chen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a survey with the Purple Mountain Observatory (PMO) 13.7-m radio telescope for class I methanol masers from the 95 GHz (8_0 - 7_1 A^+) transition. The 214 target sources were selected by combining information from both the Spitzer GLIMPSE and 1.1 mm BGPS survey catalogs. The observed sources satisfy both the GLIMPSE mid-IR criteria of [3.6]-[4.5]>1.3, [3.6]-[5.8]>2.5, [3.6]-[8.0]>2.5 and 8.0 um magnitude less than 10, and also have an associated 1.1 mm BGPS source. Class I methanol maser emission was detected in 63 sources, corresponding to a detection rate of 29% for this survey. For the majority of detections (43), this is the first identification of a class I methanol maser associated with these sources. We show that the intensity of the class I methanol maser emission is not closely related to mid-IR intensity or the colors of the GLIMPSE point sources, however, it is closely correlated with properties (mass and beam-averaged column density) of the BGPS sources. Comparison of measures of star formation activity for the BGPS sources with and without class I methanol masers indicate that the sources with class I methanol masers usually have higher column density and larger flux density than those without them. Our results predict that the criteria log(S_{int})<-38.0+1.72log(N_{H_{2}}^{beam}) and log(N_{H_{2}}^{beam})>22.1, which utilizes both the integrated flux density (S_{int}) and beam-averaged column density (N_{H_{2}}^{beam}) of the BGPS sources, are very efficient for selecting sources likely to have an associated class I methanol maser. Our expectation is that searches using these criteria will detect 90% of the predicted number of class I methanol masers from the full BGPS catalog (~ 1000), and do so with a high detection efficiency (~75%).



rate research

Read More

130 - Yingjie Li , Ye Xu , Xi Chen 2017
We report on a 95 GHz ($8_0-7_1$ A$^{+}$) methanol (CH$_3$OH) emission survey with the Purple Mountain Observatory Delingha 13.7 m telescope. Eight supernova remnants (SNRs) with angular size $lesssim$ 10 were observed, but emission was only detected in three SNRs near the Galactic center (Sgr A East, G 0.1-0.1, and G 359.92-0.09). CH$_3$OH emission mainly surrounds the SNRs and can be decomposed into nine spatial peaks with velocity range of eight peaks being (-30, 70) km s$^{-1}$, and the other (70, 120) km s$^{-1}$. They are probably excited by interaction with these SNRs and adjacent molecular gas in the central molecular zone (CMZ), although star formation may play an important role in exciting CH$_3$OH emission in some regions of CMZ. We infer that tidal action is unlikely to be an excitation source for CH$_3$OH emission.
We present a simultaneous single-dish survey of 22 GHz water maser and 44 GHz and 95 GHz class I methanol masers toward 77 6.7 GHz class II methanol maser sources, which were selected from the Arecibo methanol maser Galactic plane survey (AMGPS) catalog.Water maser emission is detected in 39 (51%) sources, of which 15 are new detections. Methanol maser emission at 44 GHz and 95 GHz is found in 25 (32%) and 19 (25%) sources, of which 21 and 13 sources are newly detected, respectively. We find 4 high-velocity (> 30 km/s) water maser sources, including 3 dominant blue- or redshifted outflows.The 95 GHz masers always appear with the 44 GHz maser emission. They are strongly correlated with 44 GHz masers in velocity, flux density, and luminosity, while they are not correlated with either water or 6.7 GHz class II methanol masers. The average peak flux density ratio of 95 GHz to 44 GHz masers is close to unity, which is two times higher than previous estimates. The flux densities of class I methanol masers are more closely correlated with the associated BGPS core mass than those of water or class II methanol masers. Using the large velocity gradient (LVG) model and assuming unsaturated class I methanol maser emission, we derive the fractional abundance of methanol to be in a range of 4.2*10^-8 to 2.3*10^-6, with a median value of 3.3pm2.7*10^-7.
We present a study of the association between class I methanol masers and cold dust clumps from the ATLASGAL survey. It was found that almost 100% of class I methanol masers are associated with objects listed in the ATLASGAL compact source catalog. We find a statistically significant difference in the flux density, luminosity, number and column density and temperature distributions of ATLASGAL sources associated with 95/44 GHz methanol masers compared with those ATLASGAL sources devoid of 95 GHz methanol masers. The masers tend to arise in clumps with higher densities, luminosities and temperatures compared with both the full sample of the ATLASGAL clumps, as well as the sample of ATLASGAL sources that were cross-matched with positions previously searched for methanol masers but with no detections. Comparison between the peak position of ATLASGAL clumps and the interferometric positions of the associated class I and II methanol masers reveals that class I masers are generally located at larger physical distances from the peak submillimetre emission than class II masers. We conclude that the tight association between ATLASGAL sources and class I methanol masers may be used as a link toward understanding the conditions of the pumping of these masers and evolutionary stages at which they appear.
We report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the high mass star forming region DR21W. There are two prominent maser spots in DR21W at the ends of a northwest-southeast linear arrangement. For the maser at the northwestern end (maser A), we fit three Gaussian components. In the strongest component, we obtain a significant Zeeman detection, with $zB_{rm los}=-23.4pm3.2$ Hz. If we use $z=-0.920$ Hz mG$^{-1}$ for the $F=5 rightarrow 4$ hyperfine transition, this corresponds to a magnetic field $|B_{rm los}|=25.4$ mG; $B_{rm los}$ would be higher if a different hyperfine was responsible for the 44 GHz maser, but our results also rule out some hyperfines, since fields in these regions cannot be hundreds of mG. Class I methanol masers form in outflows where shocks compress magnetic fields in proportion to gas density. Designating our detected $B_{rm los}=25$ mG as the magnetic field in the post-shock gas, we find that $B_{rm los}$ in the pre-shock gas should be 0.1-0.8 mG. Although there are no thermal-line Zeeman detections toward DR21W, such values are in good agreement with Zeeman measurements in the CN thermal line of 0.36 and 0.71 mG about $3.5$ away in DR21(OH) in gas of comparable density to the pre-shock gas density in DR21W. Comparison of our derived magnetic energy density to the kinetic energy density in DR21W indicates that magnetic fields likely play a significant role in shaping the dynamics of the post-shocked gas in DR21W.
154 - E. Momjian , A. P. Sarma 2016
We report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the star forming region DR21(OH). In a 219 Jy/beam maser centered at an LSR velocity of 0.83 km s$^{-1}$, we find a 20-$sigma$ detection of $zB_{text{los}} = 53.5 pm 2.7$ Hz. If 44 GHz methanol masers are excited at $n sim 10^{7-8}$ cm$^{-3}$, then the $B~vs.~n^{1/2}$ relation would imply from comparison with Zeeman effect detections in the CN($1-0$) line toward DR21(OH) that magnetic fields traced by 44 GHz methanol masers in DR21(OH) should be $sim$10 mG. Together with our detected $zB_{text{los}} = 53.5$ Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor $z$ is $sim$5 Hz mG$^{-1}$. Such small values of $z$ would not be a surprise, as the methanol molecule is non paramagnetic, like H$_2$O. Empirical attempts to determine $z$, as demonstrated, are important because currently there are no laboratory measurements or theoretically calculated values of $z$ for the 44 GHz methanol transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا