Do you want to publish a course? Click here

Simultaneous observation of water and class I methanol masers toward class II methanol maser sources

75   0   0.0 ( 0 )
 Added by Hyunwoo Kang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a simultaneous single-dish survey of 22 GHz water maser and 44 GHz and 95 GHz class I methanol masers toward 77 6.7 GHz class II methanol maser sources, which were selected from the Arecibo methanol maser Galactic plane survey (AMGPS) catalog.Water maser emission is detected in 39 (51%) sources, of which 15 are new detections. Methanol maser emission at 44 GHz and 95 GHz is found in 25 (32%) and 19 (25%) sources, of which 21 and 13 sources are newly detected, respectively. We find 4 high-velocity (> 30 km/s) water maser sources, including 3 dominant blue- or redshifted outflows.The 95 GHz masers always appear with the 44 GHz maser emission. They are strongly correlated with 44 GHz masers in velocity, flux density, and luminosity, while they are not correlated with either water or 6.7 GHz class II methanol masers. The average peak flux density ratio of 95 GHz to 44 GHz masers is close to unity, which is two times higher than previous estimates. The flux densities of class I methanol masers are more closely correlated with the associated BGPS core mass than those of water or class II methanol masers. Using the large velocity gradient (LVG) model and assuming unsaturated class I methanol maser emission, we derive the fractional abundance of methanol to be in a range of 4.2*10^-8 to 2.3*10^-6, with a median value of 3.3pm2.7*10^-7.



rate research

Read More

125 - P.D. Stack 2011
We have used the University of Tasmania Mt Pleasant 26m radio telescope to investigate the polarisation characteristics of a sample of strong 6.7 GHz methanol masers, the first spectral line polarisation observations to be undertaken with this instrument. As part of this process we have developed a new technique for calibrating linear polarisation spectral line observations. This calibration method gives results consistent with more traditional techniques, but requires much less observing time on the telescope. We have made the first polarisation measurements of a number of 6.7 GHz methanol masers and find linear polarisation at levels of a few - 10% in most of the sources we observed, consistent with previous results. We also investigated the circular polarisation produced by Zeeman splitting in the 6.7 GHz methanol maser G9.62+0.20 to get an estimate of the line of sight magnetic field strength of 35+/-7 mG.
We report the result of a systematic methanol observation toward IRAS 19312+1950. The properties of the SiO, H2O and OH masers of this object are consistent with those of mass-losing evolved stars, but some other properties are difficult to explain in the standard scheme of stellar evolution in its late stage. Interestingly, a tentative detection of radio methanol lines was suggested toward this object by a previous observation. To date, there are no confirmed detections of methanol emission towards evolved stars, so investigation of this possible detection is important to better understand the circumstellar physical/chemical environment of IRAS 19312+1950. In this study, we systematically observed multiple methanol lines of IRAS 19312+1950 in the lambda=3mm, 7mm, and 13mm bands, and detected 6 lines including 4 thermal lines and 2 class I maser lines. We derived basic physical parameters including kinetic temperature and relative abundances by fitting a radiative transfer model. According to the derived excitation temperature and line profiles, a spherically expanding outflow lying at the center of the nebulosity is excluded from the possibilities for methanol emission regions. The detection of class I methanol maser emission suggests that a shock region is involved in the system of IRAS 19312+1950. If the central star of IRAS 19312+1950 is an evolved star as suggested in the past, the class I maser detected in the present observation is the first case detected in an interaction region between an evolved star outflow and ambient molecular gas.
122 - S.P. Ellingsen 2011
We report the results of a search for class II methanol masers at 37.7, 38.3 and 38.5 GHz towards a sample of 70 high-mass star formation regions. We primarily searched towards regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesised to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.
In this paper, we present a database of class I methanol masers. The compiled information from the available literature provides an open and fast access to the data on class I methanol maser emission, including search, analysis and visualization of the extensive maser data set. There is information on individual maser components detected with single-dish observations and maser spots obtained from interferometric data. At the moment the database contains information from ~100 papers, i.e. ~7500 observations and ~650 sites of class I methanol masers. Analysis of the data collected in the database shows that the distribution of class I methanol maser sources is similar to that of class II methanol masers. They are mostly found in the Molecular Ring, where majority of the OB stars are located. The difference between class I and II distributions is the presence of many class I methanol masers in the Nuclear Disk region (Central Molecular Zone). Access to the class I methanol maser database is available online at http://maserdb.net
The Australia Telescope Compact Array has been used to search for 22-GHz water masers towards the 119 6.7-GHz methanol masers detected in the Methanol Multi-Beam survey between Galactic longitudes 6 and 20 degrees; we find water masers associated with 55 (~46 per cent). Methanol masers with associated water masers have a higher mean integrated luminosity than those without and there is a general trend for sources with more luminous 6.7-GHz methanol masers to be associated with more luminous water maser emission. We have inspected the GLIMPSE three colour images of the regions surrounding the masers and cross-matched the maser positions with existing catalogues of Extended Green Objects and Infrared Dark Clouds. We find more Extended Green Objects at sites where both methanol and water masers are present than at sites with only methanol masers, but no significant difference in the fraction embedded within Infrared Dark Clouds. Analysis of the 1.1-mm dust emission shows dust clumps associated with masers that have greater flux densities and higher column densities than those without. Dust clumps associated with both water and 6.7-GHz methanol masers are generally the most compact clumps followed by those associated with only methanol then the clumps without associated maser emission. We conclude that protostars with both methanol and water masers are often older than those with only methanol, however, we suggest that the evolutionary phase traced by water masers is not as well defined as for 6.7-GHz methanol masers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا