Do you want to publish a course? Click here

X-ray cross-correlation analysis applied to disordered two-dimensional systems

446   0   0.0 ( 0 )
 Added by Ivan Vartaniants
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Angular x-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of coherent x-ray scattering experiments. Here, we present the results of simulations that validate our theoretical findings for XCCA obtained in a previous paper [M. Altarelli et al., Phys. Rev. B 82, 104207 (2010)]. We consider as a model two-dimensional (2D) disordered systems composed of non-interacting colloidal clusters with fivefold symmetry and with orientational and positional disorder. We simulate a coherent x-ray scattering in the far field from such disordered systems and perform the angular cross-correlation analysis of calculated diffraction data. The results of our simulations show the relation between the Fourier series representation of the cross-correlation functions (CCFs) and different types of correlations in disordered systems. The dependence of structural information extracted by XCCA on the density of disordered systems and the degree of orientational disorder of clusters is investigated. The statistical nature of the fluctuations of the CCFs in the model `single-shot experiments is demonstrated and the potential of extracting structural information from the analysis of CCFs averaged over a set of diffraction patterns is discussed. We also demonstrate the effect of partial coherence of x-rays on the results of XCCA.



rate research

Read More

361 - R.P. Kurta , M. Altarelli , 2013
Angular x-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of x-ray scattering experiments. In this paper we summarize recent theoretical developments related to the Fourier analysis of the cross-correlation functions. Results of our simulations demonstrate the application of XCCA to two- and three-dimensional (2D and 3D) disordered systems of particles. We show that the structure of a single particle can be recovered using x-ray data collected from a 2D disordered system of identical particles. We also demonstrate that valuable structural information about the local structure of 3D systems, inaccessible from a standard small-angle x-ray scattering experiment, can be resolved using XCCA.
103 - M. Altarelli , R.P. Kurta , 2010
In a recent article (P.Wochner et al., PNAS (2009)) x-ray scattering intensity correlations around a ring, in the speckle diffraction pattern of a colloidal glass, were shown to display a remarkable ~ cos(n $phi$) dependence on the angular coordinate $phi$ around the ring, with integer index n depending on the magnitude of the scattering wavevector. With an analytical derivation that preserves full generality in the Fraunhofer diffraction limit, we clarify the relationship of this result to previous x-ray studies of bond-orientation order, and provide a sound basis to the statement that the angular intensity correlations deliver information on local bond arrangements in a disordered (or partially ordered) system. We present a detailed analysis of the angular cross-correlation function and show its applicability for studies of wide range of structural properties of disordered systems, from local structure to spatial correlations between distant structural elements.
As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath. Such a bath is self-generated by the fermions, via inelastic scattering mediated by short-ranged interactions. We calculate the dephasing of weak localization perturbatively through second order in the bath coupling. However, the expansion breaks down at long times, and is not stabilized by including a mean-field decay rate, signaling a failure of the self-consistent Born approximation. We also consider a many-channel quantum wire where short-ranged, spin-exchange interactions coexist with screened Coulomb interactions. We calculate the dephasing rate, treating the short-ranged interactions perturbatively and the Coulomb interaction exactly. The latter provides a physical infrared regularization that stabilizes perturbation theory at long times, giving the first controlled calculation of quasi-1D dephasing due to diffusive noise. At first order in the diffusive bath coupling, we find an enhancement of the dephasing rate, but at second order we find a rephasing contribution. Our results differ qualitatively from those obtained via self-consistent calculations and are relevant in two different contexts. First, in the search for precursors to many-body localization in the ergodic phase. Second, our results provide a mechanism for the enhancement of dephasing at low temperatures in spin SU(2)-symmetric quantum wires, beyond the Altshuler-Aronov-Khmelnitsky result. The enhancement is possible due to the amplification of the triplet-channel interaction strength, and provides an additional mechanism that could contribute to the experimentally observed low-temperature saturation of the dephasing time.
We propose the weak localization of magnons in a disordered two-dimensional antiferromagnet. We derive the longitudinal thermal conductivity $kappa_{xx}$ for magnons of a disordered Heisenberg antiferromagnet in the linear-response theory with the linear-spin-wave approximation. We show that the back scattering of magnons is enhanced critically by the particle-particle-type multiple impurity scattering. This back scattering causes a logarithmic suppression of $kappa_{xx}$ with the length scale in two dimensions. We also argue a possible effect of inelastic scattering on the temperature dependence of $kappa_{xx}$. This weak localization is useful to control turning the magnon thermal current on and off.
150 - P. Buonsante 2007
In the present paper we describe the properties induced by disorder on an ultracold gas of Bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centered on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا